以下结合案例:统计消息中单词出现次数,来测试并说明kafka消息流式处理的执行流程

环境

JDK17
zookeeper:3.4.14
kafka:2.13-2.8.1

Maven依赖

        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-streams</artifactId>
            <version>2.5.1</version>
            <exclusions>
                <exclusion>
                    <artifactId>connect-json</artifactId>
                    <groupId>org.apache.kafka</groupId>
                </exclusion>
                <exclusion>
                    <groupId>org.apache.kafka</groupId>
                    <artifactId>kafka-clients</artifactId>
                </exclusion>
            </exclusions>
        </dependency>

        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>2.5.1</version>
        </dependency>

准备工作

首先编写创建三个类,分别作为消息生产者、消息消费者、流式处理者
KafkaStreamProducer:消息生产者

public class KafkaStreamProducer {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        Properties properties = new Properties();
        //kafka的连接地址
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.246.128:9092");
        //发送失败,失败的重试次数
        properties.put(ProducerConfig.RETRIES_CONFIG, 5);
        //消息key的序列化器
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
        //消息value的序列化器
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");

        KafkaProducer<String, String> producer = new KafkaProducer<>(properties);

        for (int i = 0; i < 5; i++) {
            ProducerRecord<String, String> producerRecord = new ProducerRecord<>("kafka-stream-topic-input", "hello kafka");
            producer.send(producerRecord);
        }

        producer.close();

    }
}

该消息生产者向主题kafka-stream-topic-input发送五次hello kafka
KafkaStreamConsumer:消息消费者

public class KafkaStreamConsumer {
    public static void main(String[] args) {
        Properties properties = new Properties();
        //kafka的连接地址
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.246.128:9092");
        //消费者组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "group1");
        //消息的反序列化器
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
        //手动提交偏移量
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);

        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);
        //订阅主题
        consumer.subscribe(Collections.singletonList("kafka-stream-topic-output"));

        try {
            while (true) {
                ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));
                for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                    System.out.println("consumerRecord.key() = " + consumerRecord.key());
                    System.out.println("consumerRecord.value() = " + consumerRecord.value());
                }
                // 异步提交偏移量
                consumer.commitAsync();
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            // 同步提交偏移量
            consumer.commitSync();
        }
    }
}

KafkaStreamQuickStart:流式处理类

public class KafkaStreamQuickStart {

    public static void main(String[] args) {
        Properties properties = new Properties();
        properties.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.246.128:9092");
        properties.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        properties.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        properties.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-quickstart");

        StreamsBuilder streamsBuilder = new StreamsBuilder();

        //流式计算
        streamProcessor(streamsBuilder);

        KafkaStreams kafkaStreams = new KafkaStreams(streamsBuilder.build(), properties);

        kafkaStreams.start();
    }

    /**
     * 消息格式:hello world hello world
     * 配置并处理流数据。
     * 使用StreamsBuilder创建并配置KStream,对输入的主题中的数据进行处理,然后将处理结果发送到输出主题。
     * 具体处理包括:分割每个消息的值,按值分组,对每个分组在10秒的时间窗口内进行计数,然后将结果转换为KeyValue对并发送到输出主题。
     *
     * @param streamsBuilder 用于构建KStream对象的StreamsBuilder。
     */
    private static void streamProcessor(StreamsBuilder streamsBuilder) {
        //"kafka-stream-topic-input"主题中读取数据流
        KStream<String, String> stream = streamsBuilder.stream("kafka-stream-topic-input");
        System.out.println("stream = " + stream);
        // 将每个值按空格分割成数组,并将数组转换为列表,以扩展单个消息的值
        stream.flatMapValues((ValueMapper<String, Iterable<String>>) value -> {
                    String[] valAry = value.split(" ");
                    return Arrays.asList(valAry);
                })
                // 按消息的值进行分组,为后续的窗口化计数操作做准备
                .groupBy((key, value) -> value)
                // 定义10秒的时间窗口,在每个窗口内对每个分组进行计数
                .windowedBy(TimeWindows.of(Duration.ofSeconds(10)))
                .count()
                // 将计数结果转换为流,以便进行进一步的处理和转换
                .toStream()
                // 显示键值对的内容,并将键和值转换为字符串格式
                .map((key, value) -> {
                    System.out.println("key = " + key);
                    System.out.println("value = " + value);
                    return new KeyValue<>(key.key().toString(), value.toString());
                })
                // 将处理后的流数据发送到"kafka-stream-topic-output"主题
                .to("kafka-stream-topic-output");
    }
    
}

该处理类首先从主题kafka-stream-topic-input中获取消息数据,经处理后发送到主题kafka-stream-topic-output中,再由消息消费者KafkaStreamConsumer进行消费

执行结果

在这里插入图片描述
在这里插入图片描述

流式处理流程及原理说明

初始阶段

当从输入主题kafka-stream-topic-input读取数据流时,每个消息都是一个键值对。假设输入消息的键是null或一个特定的字符串,这取决于消息是如何被发送到输入主题的。

KStream<String, String> stream = streamsBuilder.stream("kafka-stream-topic-input");

分割消息值

使用flatMapValues方法分割消息的值,但这个操作不会改变消息的键。如果输入消息的键是null,那么在这个阶段消息的键仍然是null

stream.flatMapValues((ValueMapper<String, Iterable<String>>) value -> {
    String[] valAry = value.split(" ");
    return Arrays.asList(valAry);
})

按消息的值进行分组

在 Kafka Streams 中,当使用groupBy方法对流进行分组时,实际上是在指定一个新的键,这个键将用于后续的窗口化操作和聚合操作。在这个案例中groupBy方法被用来按消息的值进行分组:

.groupBy((key, value) -> value)

这意味着在分组操作之后,流中的每个消息的键被设置为消息的值。因此,当你在后续的map方法中看到key参数时,这个key实际上是消息的原始值,因为在groupBy之后,消息的值已经变成了键。

定义时间窗口并计数

在这个阶段,消息被窗口化并计数,但是键保持不变。

.windowedBy(TimeWindows.of(Duration.ofSeconds(10)))
.count()

将计数结果转换为流

当将计数结果转换为流时,键仍然是之前分组时的键

.toStream()

处理和转换结果

map方法中,你看到的key参数实际上是分组后的键,也就是消息的原始值:

.map((key, value) -> {
    System.out.println("key = " + key);
    System.out.println("value = " + value);
    return new KeyValue<>(key.key().toString(), value.toString());
})

map方法中的key.key().toString()是为了获取键的字符串表示,而value.toString()是为了将计数值转换为字符串。

将处理后的数据发送到输出主题

.to("kafka-stream-topic-output");
点击阅读全文
Logo

Kafka开源项目指南提供详尽教程,助开发者掌握其架构、配置和使用,实现高效数据流管理和实时处理。它高性能、可扩展,适合日志收集和实时数据处理,通过持久化保障数据安全,是企业大数据生态系统的核心。

更多推荐