目录

1. kafka下载

2.环境准备

3.kafka部署

3.1 修改系统配置文件

3.2 开放端口

3.3 安装 kafka

3.4 验证

4. 设置服务开机自启动


本文将以三台服务器为例,介绍在 linux 系统下kafka的部署方式。

1. kafka下载

下载地址:Apache Kafka

选择需要的介质下载,这里以 kafka_2.11-1.1.1.tgz 为例

2.环境准备

   部署kafka需要先部署JDK 以及zookeeper ,JDK部署可以参考Linux下JDK 安装-CSDN博客 

zookeeper 部署可以参考 Linux 下 zookeeper 集群部署-CSDN博客

3.kafka部署

注:以下操作三台机器均需要修改

3.1 修改系统配置文件

(1)编辑 hosts 文件

         vi /etc/hosts

        添加如下内容

         ip(第一台机器)   kafka1

         ip(第二台机器)   kafka2

         ip(第三台机器)   kafka3

(2)编辑ulimit

         vi /etc/security/limits.d/20-nproc.conf

        添加如下内容

       * soft nofile 655350

       * hard nofile 655350

(3)编辑系统参数

        vi /etc/sysctl.conf

        添加如下内容

        vm.max_map_count=655350

       保存后执行命令生效

        sysctl -p

3.2 开放端口

kafka 默认需要开通节点 9092 端口

(1)查看防火墙状态

        systemctl status firewalld

(2)开放端口

       firewall-cmd --zone=public --add-port=9092/tcp --permanent  

(3)防火墙重新加载配置

       firewall-cmd --reload  

(4) 查看防火墙所有开放的端口

       firewall-cmd --zone=public --list-ports

3.3 安装 kafka

(1) 解压

       上传kafka介质( kafka_2.11-1.1.1.tgz)到 /opt 目录

       解压到当前目录下

       tar zxfv  kafka_2.11-1.1.1.tgz

(2) 配置 jvm.option

         touch /opt/kafka_2.11-1.1.1/bin/kafka-run-class.sh

         vi  /opt/kafka_2.11-1.1.1/bin/kafka-run-class.sh

         添加如下内容

export KAFKA_HEAP_OPTS="-Xmx4g -Xms4g -XX:MetaspaceSize=96m -XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -XX:G1HeapRegionSize=16M -XX:MinMetaspaceFreeRatio=50 -XX:MaxMetaspaceFreeRatio=80"
export JMX_PORT=9988

(3) 修改 server.properties 配置文件

         vi  /opt/kafka_2.11-1.1.1/config/server.properties

         注:broker.id及listeners 修改为对应节点ID和地址,zookeeper.connect改为zk 地址

#################### Server Basics ####################

# The id of the broker. This must be set to a unique integer for each broker.
# 修改为节点ID
broker.id=1  

#################### Socket Server Settings ####################

# The address the socket server listens on. It will get the value returned from 
# java.net.InetAddress.getCanonicalHostName() if not configured.
#   FORMAT:
#     listeners = listener_name://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092
listeners=PLAINTEXT://kafka1:9092

# Hostname and port the broker will advertise to producers and consumers. If not set, 
# it uses the value for "listeners" if configured.  Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
#advertised.listeners=PLAINTEXT://your.host.name:9092

# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL

# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=3

# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=8

# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400

# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400

# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600


#################### Log Basics ####################

# A comma separated list of directories under which to store log files
log.dirs=/data/kafka

# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1

# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1

#################### Internal Topic Settings  ####################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended for to ensure availability such as 3.
offsets.topic.replication.factor=3
transaction.state.log.replication.factor=3
transaction.state.log.min.isr=2

#################### Log Flush Policy ####################

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000

#################### Log Retention Policy ####################

# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.

# The minimum age of a log file to be eligible for deletion due to age
log.retention.hours=168

# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824

# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000

#################### Zookeeper ####################

# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
# 部署的 zookeeper 地址
zookeeper.connect=zk1:2181,zk2:2181,zk3:2181

# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=6000


#################### Group Coordinator Settings ####################

# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0

(4)创建数据目录

        mkdir -p /data/kafka

(5)启动

/opt/kafka_2.11-1.1.1/bin/kafka-server-start.sh -daemon /opt/kafka_2.11-1.1.1/config/server.properties
3.4 验证

(1) 创建topic

/opt/kafka_2.11-1.1.1/bin/kafka-topics.sh --create --zookeeper zk1 --replication-factor 2 --partitions 1 --topic hello

(2) 连接producer

/opt/kafka_2.11-1.1.1/bin/kafka-console-producer.sh --broker-list kafka1:9092 --topic hello

(3) 连接consumer

/opt/kafka_2.11-1.1.1/bin/kafka-console-consumer.sh --bootstrap-server kafka2:9092 --topic hello --from-beginning

/opt/kafka_2.11-1.1.1/bin/kafka-console-consumer.sh --bootstrap-server kafka3:9092 --topic hello --from-beginning

(3) 测试

          在producer的shell中输入字符如:test

          consumer中会显示test

4. 设置服务开机自启动

注:以下操作三台机器均需要修改

(1)关闭kafka

        /opt/kafka_2.11-1.1.1/bin/kafka-server-stop.sh

(2)创建启动服务文件

      touch /etc/systemd/system/kafka.service

      vi /etc/systemd/system/kafka.service

 3)编写启动脚本

[Unit]
Description=kafka.service
After=network.target remote-fs.target

[Service]
User=root
Type=forking
ExecStart=/usr/bin/bash /opt/kafka_2.11-1.1.1/bin/kafka-server-start.sh -daemon /opt/kafka_2.11-1.1.1/config/server.properties
ExecStop=/usr/bin/bash /opt/kafka_2.11-1.1.1/bin/kafka-server-stop.sh
ExecReload=$ExecStop;$ExecStart
LimitCORE=infinity
LimitNOFILE=204800
LimitNPROC=204800

[Install]
WantedBy=multi-user.target

(4)关闭和启动服务

       启动

       systemctl start kafka.service

       停止

       systemctl stop kafka.service

       重启

       systemctl restart kafka.service

(5)设置服务是否开机启动

      添加系统服务

      systemctl enable kafka.service

      删除系统服务

      systemctl disable kafka.service

(6)重启机器

       reboot

       查看kafka是否开机自启动。

Logo

Kafka开源项目指南提供详尽教程,助开发者掌握其架构、配置和使用,实现高效数据流管理和实时处理。它高性能、可扩展,适合日志收集和实时数据处理,通过持久化保障数据安全,是企业大数据生态系统的核心。

更多推荐