Kafka架构深入(进阶介绍 三)
Kafka中消息是以topic进行分类的,生产者生产消息,消费者消费消息,都是面向topic的。topic是逻辑上的概念,而partition是物理上的概念,,该log文件中存储的就是producer生产的数据。Producer生产的数据会被不断追加到该log文件末端,且每条数据都有自己的offset。消费者组中的每个消费者,都会实时记录自己消费到了哪个offset,以便出错恢复时,从上次的位置继
Kafka工作流程及文件存储机制
Kafka中消息是以topic进行分类的,生产者生产消息,消费者消费消息,都是面向topic的。
topic是逻辑上的概念,而partition是物理上的概念,每个partition对应于一个log文件,该log文件中存储的就是producer生产的数据。Producer生产的数据会被不断追加到该log文件末端,且每条数据都有自己的offset。消费者组中的每个消费者,都会实时记录自己消费到了哪个offset,以便出错恢复时,从上次的位置继续消费。
由于生产者生产的消息会不断追加到log文件末尾,为防止log文件过大导致数据定位效率低下,Kafka采取了分片和索引机制,将每个partition分为多个segment。
每个partition(目录)相当于一个巨型文件被平均分配到多个大小相等的segment(段)数据文件中(每个segment 文件中消息数量不一定相等),这种特性也方便old segment的删除,即方便已被消费的消息的清理,提高磁盘的利用率。每个partition只需要支持顺序读写就行,segment的文件生命周期由服务端配置参数(log.segment.bytes,log.roll.{ms,hours}等若干参数)决定。
每个segment对应两个文件——“.index”文件和“.log”文件。分别表示为segment索引文件和数据文件(引入索引文件的目的就是便于利用二分查找快速定位message位置)。这两个文件的命令规则为:partition全局的第一个segment从0开始,后续每个segment文件名为上一个segment文件最后一条消息的offset值,数值大小为64位,20位数字字符长度,没有数字用0填充。
这些文件位于一个文件夹下(partition目录),该文件夹的命名规则为:topic名称+分区序号。例如,first这个topic有三个分区,则其对应的文件夹为first-0,first-1,first-2。
00000000000000000000.index
00000000000000000000.log
00000000000000170410.index
00000000000000170410.log
00000000000000239430.index
00000000000000239430.log
index和log文件以当前segment的第一条消息的offset命名。下图为index文件和log文件的结构示意图。
“.index”文件存储大量的索引信息,“.log”文件存储大量的数据,索引文件中的元数据指向对应数据文件中message的物理偏移地址。
Kafka生产者
分区策略
1)分区的原因
(1)方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
(2)可以提高并发,因为可以以Partition为单位读写了。
2)分区的原则
我们需要将producer发送的数据封装成一个ProducerRecord对象。
(1)指明 partition 的情况下,直接将指明的值直接作为 partiton 值;
(2)没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;
(3)既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法。
数据可靠性保证
为保证producer发送的数据,能可靠的发送到指定的topic,topic的每个partition收到producer发送的数据后,都需要向producer发送ack(acknowledgement确认收到),如果producer收到ack,就会进行下一轮的发送,否则重新发送数据。
1)副本数据同步策略
方案 | 优点 | 缺点 |
半数以上完成同步,就发送ack | 延迟低 | 选举新的leader时,容忍n台节点的故障,需要2n+1个副本 |
全部完成同步,才发送ack | 选举新的leader时,容忍n台节点的故障,需要n+1个副本 | 延迟高 |
Kafka选择了第二种方案,原因如下:
1.同样为了容忍n台节点的故障,第一种方案需要2n+1个副本,而第二种方案只需要n+1个副本,而Kafka的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。
2.虽然第二种方案的网络延迟会比较高,但网络延迟对Kafka的影响较小。
2)ISR
采用第二种方案之后,设想以下情景:leader收到数据,所有follower都开始同步数据,但有一个follower,因为某种故障,迟迟不能与leader进行同步,那leader就要一直等下去,直到它完成同步,才能发送ack。这个问题怎么解决呢?
Leader维护了一个动态的in-sync replica set (ISR),意为和leader保持同步的follower集合。当ISR中的follower完成数据的同步之后,leader就会给producer发送ack。如果follower长时间未向leader同步数据,则该follower将被踢出ISR,该时间阈值由replica.lag.time.max.ms参数设定。Leader发生故障之后,就会从ISR中选举新的leader。
3)ack应答机制
对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等ISR中的follower全部接收成功。
所以Kafka为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡,选择以下的配置。
acks参数配置:
acks:
0:producer不等待broker的ack,这一操作提供了一个最低的延迟,broker一接收到还没有写入磁盘就已经返回,当broker故障时有可能丢失数据;
1:producer等待broker的ack,partition的leader落盘成功后返回ack,如果在follower同步成功之前leader故障,那么将会丢失数据;
-1(all):producer等待broker的ack,partition的leader和follower全部落盘成功后才返回ack。但是如果在follower同步完成后,broker发送ack之前,leader发生故障,那么会造成数据重复。
4)故障处理细节
LEO:指的是每个副本最大的offset;
HW:指的是消费者能见到的最大的offset,ISR队列中最小的LEO。
(1)follower故障
follower发生故障后会被临时踢出ISR,待该follower恢复后,follower会读取本地磁盘记录的上次的HW,并将log文件高于HW的部分截取掉,从HW开始向leader进行同步。等该follower的LEO大于等于该Partition的HW,即follower追上leader之后,就可以重新加入ISR了。
(2)leader故障
leader发生故障之后,会从ISR中选出一个新的leader,之后,为保证多个副本之间的数据一致性,其余的follower会先将各自的log文件高于HW的部分截掉,然后从新的leader同步数据。
注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。
Exactly Once语义
对于某些比较重要的消息,我们需要保证exactly once语义,即保证每条消息被发送且仅被发送一次。
在0.11版本之后,Kafka Producer引入了幂等性机制(idempotent),配合acks = -1时的at least once语义,实现了producer到broker的exactly once语义。
idempotent + at least once = exactly once
使用时,只需将enable.idempotence属性设置为true,kafka自动将acks属性设为-1,并将retries属性设为Integer.MAX_VALUE。
幂等性:可以执行多次写入,但是最终只有一个写入的结果(去重),每次发送一批消息时,都会给消息添加一个序列号,这个序列号会被持久化到topic中,kafka根据序列号判断消息是否重复,如果写入之后发现序列号已存在,这批消息就会被删除
Kafka消费者
消费方式
consumer采用pull(拉)模式从broker中读取数据。
push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由broker决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而pull模式则可以根据consumer的消费能力以适当的速率消费消息。
pull模式不足之处是,如果kafka没有数据,消费者可能会陷入循环中,一直返回空数据。针对这一点,Kafka的消费者在消费数据时会传入一个时长参数timeout,如果当前没有数据可供消费,consumer会等待一段时间之后再返回,这段时长即为timeout。
分区分配策略
一个consumer group中有多个consumer,一个 topic有多个partition,所以必然会涉及到partition的分配问题,即确定那个partition由哪个consumer来消费。
Kafka有两种分配策略,一是RoundRobin,一是Range。
将分区的所有权从一个消费者移到另一个消费者称为重新平衡(rebalance)。当以下事件发生时,Kafka 将会进行一次分区分配:
同一个 Consumer Group 内新增消费者
消费者离开当前所属的Consumer Group,包括shuts down 或 crashes
订阅的主题新增分区
RoundRobin
Range
offset的维护
由于consumer在消费过程中可能会出现断电宕机等故障,consumer恢复后,需要从故障前的位置的继续消费,所以consumer需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费。
Kafka 0.9版本之前,consumer默认将offset保存在Zookeeper中,从0.9版本开始,consumer默认将offset保存在Kafka一个内置的topic中,该topic为__consumer_offsets。
Kafka 高效读写数据
1)顺序写磁盘
Kafka的producer生产数据,要写入到log文件中,写的过程是一直追加到文件末端,为顺序写。官网有数据表明,同样的磁盘,顺序写能到600M/s,而随机写只有100K/s。这与磁盘的机械机构有关,顺序写之所以快,是因为其省去了大量磁头寻址的时间。
2)零复制技术
Zookeeper在Kafka中的作用
Kafka集群中有一个broker会被选举为Controller,负责管理集群broker的上下线,所有topic的分区副本分配和leader选举等工作。
Controller的管理工作都是依赖于Zookeeper的。
以下为partition的leader选举过程:
更多推荐
所有评论(0)