有上面的特点可以看出,Spark Streaming是要生成rdd,然后进行处理的,rdd数据集我们可以理解为静态的,然每个批次,都会生成一个rdd,该过程就体现了批处理的特性,由于数据集时间段小,数据小,所以又称微批处理,那么就说明不是真正的实时处理。

还有一点,spark Streaming与kafka的结合是不会发现kafka动态增加的topic或者partition。

Spark的详细教程,请关注浪尖公众号,查看历史推文。

Spark Streaming与kafka结合源码讲解,请加入知识星球,获取。

flink结合kafka

大家都知道flink是真正的实时处理,他是基于事件触发的机制进行处理,而不是像spark Streaming每隔若干时间段,生成微批数据,然后进行处理。那么这个时候就有了个疑问,在前面kafka小节中,我们说到了kafka是不会主动往消费者里面吐数据的,需要消费者主动去拉去数据来处理。那么flink是如何做到基于事件实时处理kafka的数据呢?在这里浪尖带着大家看一下源码,flink1.5.0为例。

1,flink与kafka结合的demo。

val env = StreamExecutionEnvironment.getExecutionEnvironment

env.getConfig.disableSysoutLogging

env.getConfig.setRestartStrategy(RestartStrategies.fixedDelayRestart(4, 10000))

// create a checkpoint every 5 seconds

env.enableCheckpointing(5000)

// make parameters available in the web interface

env.getConfig.setGlobalJobParameters(params)

// create a Kafka streaming source consumer for Kafka 0.10.x

val kafkaConsumer = new FlinkKafkaConsumer010(

params.getRequired(“input-topic”),

new SimpleStringSchema,

params.getProperties)

val messageStream = env

.addSource(kafkaConsumer)

.map(in => prefix + in)

// create a Kafka producer for Kafka 0.10.x

val kafkaProducer = new FlinkKafkaProducer010(

params.getRequired(“output-topic”),

new SimpleStringSchema,

params.getProperties)

// write data into Kafka

messageStream.addSink(kafkaProducer)

env.execute(“Kafka 0.10 Example”)

从上面的demo可以看出,数据源的入口就是FlinkKafkaConsumer010,当然这里面只是简单的构建了一个对象,并进行了一些配置的初始化,真正source的启动是在其run方法中run方法的调用过程在这里不讲解,后面会出教程讲解。

首先看一下类的继承关系

public class FlinkKafkaConsumer010 extends FlinkKafkaConsumer09

public class FlinkKafkaConsumer09 extends FlinkKafkaConsumerBase

其中,run方法就在FlinkKafkaConsumerBase里,当然其中open方法里面对kafka相关内容进行里初始化。

从输入到计算到输出完整的计算链条的调用过程,后面浪尖会出文章介绍。在这里只关心flink如何从主动消费数据,然后变成事件处理机制的过程。

由于其FlinkKafkaConsumerBase的run比较长,我这里只看重要的部分,首先是会创建Kafka09Fetcher

this.kafkaFetcher = createFetcher(

sourceContext,

subscribedPartitionsToStartOffsets,

periodicWatermarkAssigner,

punctuatedWatermarkAssigner,

(StreamingRuntimeContext) getRuntimeContext(),

offsetCommitMode,

getRuntimeContext().getMetricGroup().addGroup(KAFKA_CONSUMER_METRICS_GROUP),

useMetrics);

接着下面有段神器,flink严重优越于Spark Streaming的,代码如下:

final AtomicReference discoveryLoopErrorRef = new AtomicReference<>();

this.discoveryLoopThread = new Thread(new Runnable() {

@Override

public void run() {

try {

// --------------------- partition discovery loop ---------------------

List discoveredPartitions;

// throughout the loop, we always eagerly check if we are still running before

// performing the next operation, so that we can escape the loop as soon as possible

while (running) {

if (LOG.isDebugEnabled()) {

LOG.debug(“Consumer subtask {} is trying to discover new partitions …”, getRuntimeContext().getIndexOfThisSubtask());

}

try {

discoveredPartitions = partitionDiscoverer.discoverPartitions();

} catch (AbstractPartitionDiscoverer.WakeupException | AbstractPartitionDiscoverer.ClosedException e) {

// the partition discoverer may have been closed or woken up before or during the discovery;

// this would only happen if the consumer was canceled; simply escape the loop

break;

}

// no need to add the discovered partitions if we were closed during the meantime

if (running && !discoveredPartitions.isEmpty()) {

kafkaFetcher.addDiscoveredPartitions(discoveredPartitions);

}

// do not waste any time sleeping if we’re not running anymore

if (running && discoveryIntervalMillis != 0) {

try {

Thread.sleep(discoveryIntervalMillis);

} catch (InterruptedException iex) {

// may be interrupted if the consumer was canceled midway; simply escape the loop

break;

}

}

}

} catch (Exception e) {

discoveryLoopErrorRef.set(e);

} finally {

// calling cancel will also let the fetcher loop escape

// (if not running, cancel() was already called)

if (running) {

cancel();

}

}

}

}, "Kafka Partition Discovery for " + getRuntimeContext().getTaskNameWithSubtasks());

它定义了一个线程池对象,去动态发现kafka新增的topic(支持正则形式指定消费的topic),或者动态发现kafka新增的分区。

接着肯定是启动动态发现分区或者topic线程,并且启动kafkaFetcher。

discoveryLoopThread.start();

kafkaFetcher.runFetchLoop();

// --------------------------------------------------------------------

// make sure that the partition discoverer is properly closed

partitionDiscoverer.close();

discoveryLoopThread.join();

接着,我们进入kafkaFetcher的runFetchLoop方法,映入眼帘的是

// kick off the actual Kafka consumer

consumerThread.start();

这个线程是在构建kafka09Fetcher的时候创建的

this.consumerThread = new KafkaConsumerThread(

LOG,

handover,

kafkaProperties,

unassignedPartitionsQueue,

createCallBridge(),

getFetcherName() + " for " + taskNameWithSubtasks,

pollTimeout,

useMetrics,

consumerMetricGroup,

subtaskMetricGroup);

KafkaConsumerThread 继承自Thread,然后在其run方法里,首先看到的是

// this is the means to talk to FlinkKafkaConsumer’s main thread

final Handover handover = this.handover;

这个handover的作用呢暂且不提,接着分析run方法里面内容

1,获取消费者

try {

this.consumer = getConsumer(kafkaProperties);

}

2,检测分区并且会重分配新增的分区

try {

if (hasAssignedPartitions) {

newPartitions = unassignedPartitionsQueue.pollBatch();

}

else {

// if no assigned partitions block until we get at least one

// instead of hot spinning this loop. We rely on a fact that

// unassignedPartitionsQueue will be closed on a shutdown, so

// we don’t block indefinitely

newPartitions = unassignedPartitionsQueue.getBatchBlocking();

}

if (newPartitions != null) {

reassignPartitions(newPartitions);

}

3,消费数据

// get the next batch of records, unless we did not manage to hand the old batch over

if (records == null) {

try {

records = consumer.poll(pollTimeout);

}

catch (WakeupException we) {

continue;

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:Java)

最后我们该如何学习?

1、看视频进行系统学习

这几年的Crud经历,让我明白自己真的算是菜鸡中的战斗机,也正因为Crud,导致自己技术比较零散,也不够深入不够系统,所以重新进行学习是很有必要的。我差的是系统知识,差的结构框架和思路,所以通过视频来学习,效果更好,也更全面。关于视频学习,个人可以推荐去B站进行学习,B站上有很多学习视频,唯一的缺点就是免费的容易过时。

另外,我自己也珍藏了好几套视频资料躺在网盘里,有需要的我也可以分享给你:

1年半经验,2本学历,Curd背景,竟给30K,我的美团Offer终于来了

2、读源码,看实战笔记,学习大神思路

“编程语言是程序员的表达的方式,而架构是程序员对世界的认知”。所以,程序员要想快速认知并学习架构,读源码是必不可少的。阅读源码,是解决问题 + 理解事物,更重要的:看到源码背后的想法;程序员说:读万行源码,行万种实践。

Spring源码深度解析:

1年半经验,2本学历,Curd背景,竟给30K,我的美团Offer终于来了

Mybatis 3源码深度解析:

1年半经验,2本学历,Curd背景,竟给30K,我的美团Offer终于来了

Redis学习笔记:

1年半经验,2本学历,Curd背景,竟给30K,我的美团Offer终于来了

Spring Boot核心技术-笔记:

1年半经验,2本学历,Curd背景,竟给30K,我的美团Offer终于来了

3、面试前夕,刷题冲刺

面试的前一周时间内,就可以开始刷题冲刺了。请记住,刷题的时候,技术的优先,算法的看些基本的,比如排序等即可,而智力题,除非是校招,否则一般不怎么会问。

关于面试刷题,我个人也准备了一套系统的面试题,帮助你举一反三:

1年半经验,2本学历,Curd背景,竟给30K,我的美团Offer终于来了

只有技术过硬,在哪儿都不愁就业,“万般带不去,唯有业随身”学习本来就不是在课堂那几年说了算,而是在人生的旅途中不间断的事情。

人生短暂,别稀里糊涂的活一辈子,不要将就。
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
(img-Jx7dEJlB-1713846159197)]

Spring Boot核心技术-笔记:

[外链图片转存中…(img-wQxhvswu-1713846159198)]

3、面试前夕,刷题冲刺

面试的前一周时间内,就可以开始刷题冲刺了。请记住,刷题的时候,技术的优先,算法的看些基本的,比如排序等即可,而智力题,除非是校招,否则一般不怎么会问。

关于面试刷题,我个人也准备了一套系统的面试题,帮助你举一反三:

[外链图片转存中…(img-uIg9dhqk-1713846159198)]

只有技术过硬,在哪儿都不愁就业,“万般带不去,唯有业随身”学习本来就不是在课堂那几年说了算,而是在人生的旅途中不间断的事情。

人生短暂,别稀里糊涂的活一辈子,不要将就。
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

Logo

Kafka开源项目指南提供详尽教程,助开发者掌握其架构、配置和使用,实现高效数据流管理和实时处理。它高性能、可扩展,适合日志收集和实时数据处理,通过持久化保障数据安全,是企业大数据生态系统的核心。

更多推荐