【Kafka】Kafka快速实战与基本原理详解
因此,从一个较高的层面上来看,producer通过网络发送消息到Kafka集群,然后consumer来进行消费,服务端(brokers)和客户端(producer、consumer)之间通信通过。(注意,在启动kafka时会使用linux主机名关联的ip地址,所以需要把主机名和linux的ip映射配置到本地 host里,用vim /etc/hosts)。由于Kafka是用Scala语言开发的,运行
·
Kafka基本概念
kafka是一个分布式的,分区的消息(官方称之为
commit log
)服务。首先,让我们来看一下基础的消息(
Message
)相关术语:
名称
|
解释
|
Broker
|
消息中间件处理节点,一个Kafka节点就是一个broker,一
个或者多个Broker可以组成一个Kafka集群
|
Topic
|
Kafka根据topic对消息进行归类,发布到Kafka集群的每条
消息都需要指定一个topic
|
Producer
|
消息生产者,向Broker发送消息的客户端
|
Consumer
|
消息消费者,从Broker读取消息的客户端
|
ConsumerGroup
|
每个Consumer属于一个特定的Consumer Group,一条消
息可以被多个不同的Consumer Group消费,但是一个
Consumer Group中只能有一个Consumer能够消费该消息
|
Partition
|
物理上的概念,一个topic可以分为多个partition,每个
partition内部消息是有序的
|
因此,从一个较高的层面上来看,producer通过网络发送消息到Kafka集群,然后consumer来进行消费,服务端(brokers)和客户端(producer、consumer)之间通信通过TCP协议
来完成。
kafka基本使用
安装前的环境准备
由于Kafka是用Scala语言开发的,运行在JVM上,因此在安装Kafka之前需要先安装JDK。
yum install java‐1.8.0‐openjdk* ‐y
kafka依赖zookeeper,所以需要先安装zookeeper
#下载
wget https://archive.apache.org/dist/zookeeper/zookeeper-3.5.8/apache-zookeeper-3.5.8-bin.tar.gz
# 解压
tar -zxvf apache-zookeeper-3.5.8-bin.tar.gz
cd apache-zookeeper-3.5.8-bin
# 复制配置文件
cp conf/zoo_sample.cfg conf/zoo.cfg
# 启动zookeeper
bin/zkServer.sh start
bin/zkCli.sh
# 查看zk的根目录相关节点
ls /
如图所示:
第一步:下载kafka安装包
# 2.11是scala的版本,2.4.1是kafka的版本
wget https://archive.apache.org/dist/kafka/2.4.1/kafka_2.11-2.4.1.tgz
然后解压缩
# 解压
tar -xzf kafka_2.11-2.4.1.tgz
cd kafka_2.11-2.4.1/
第二步:修改配置
修改配置文件config/server.properties:
# broker.id属性在kafka集群中必须要是唯一
broker.id=0
# kafka部署的机器ip和提供服务的端口号
listeners=PLAINTEXT://192.168.43.63:9092
# kafka的消息存储文件 可自定义
log.dirs=/tmp/kafka-logs
# kafka连接zookeeper的地址
zookeeper.connect=192.168.43.63:2181
第三步:启动服务
现在来启动kafka服务:
启动脚本语法:
kafkaserverstart.sh [daemon] server.properties
可以看到,
server.properties
的配置路径是一个强制的参数,
daemon
表示以后台进程运行,否则ssh客户端退出后, 就会停止服务。
(注意,在启动kafka时会使用linux主机名关联的ip地址,所以需要把主机名和linux的ip映射配置到本地 host里,用vim /etc/hosts)。查看启动是否报错的文件日子为
server.log
。
# 启动kafka,运行日志在logs目录的server.log文件里
./bin/kafka-server-start.sh -daemon ./config/server.properties
或者用
./bin/kafka-server-start.sh ./config/server.properties &
# 我们进入zookeeper目录通过zookeeper客户端查看下zookeeper的目录树
./bin/zkCli.sh
ls / #查看zk的根目录kafka相关节点
ls /brokers/ids #查看kafka节点
# 停止kafka
./bin/kafka‐server‐stop.sh
server.properties核心配置详解:
Property | Default | Description |
broker.id | 0 |
每个broker都可以用一个唯一的非负整数id进行标识;这个id可以作为
broker的“名字”,你可以选择任意你喜欢的数字作为id,只要id是唯
一的即可。
|
log.dirs
|
/tmp/kafka-logs
|
kafka存放数据的路径。这个路径并不是唯一的,可以是多个,路径之间
只需要使用逗号分隔即可;每当创建新partition时,都会选择在包含最
少partitions的路径下进行。
|
listeners
|
PLAINTEXT://192.168.43.63:909
2
|
server接受客户端连接的端口,ip配置kafka本机ip即可
|
zookeeper.connec
|
localhost:2181
|
zooKeeper连接字符串的格式为:hostname:port,此处hostname和
port分别是ZooKeeper集群中某个节点的host和port;zookeeper如果
是集群,连接方式为 hostname1:port1, hostname2:port2,
hostname3:port3
|
log.retention.hours
|
168
|
每个日志文件删除之前保存的时间。默认数据保存时间对所有topic都一
样。
|
num.partitions
| 1 |
创建topic的默认分区数
|
default.replication.factor
| 1 |
自动创建topic的默认副本数量,建议设置为大于等于2
|
min.insync.replicas
| 1 |
当producer设置acks为-1时,min.insync.replicas指定replicas的最小
数目(必须确认每一个repica的写数据都是成功的),如果这个数目没
有达到,producer发送消息会产生异常
|
delete.topic.enable
| false |
是否允许删除主题
|
Spring Boot整合Kafka
首先我们需要引入kafka的依赖,如下所示:
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
application.yml配置如下:
server:
port: 8080
spring:
kafka:
bootstrap-servers: 192.168.190.129:9092,192.168.190.130:9092,192.168.190.131:9092
producer:
retries: 3
batch-size: 16384
buffer-memory: 33554432
acks: 1
# 指定消息key和消息体的编解码方式
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.apache.kafka.common.serialization.StringSerializer
consumer:
group-id: testGroup
enable-auto-commit: false
auto-offset-reset: earliest
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
listener:
ack-mode: manual_immediate
cloud:
zookeeper:
connect-string: 192.168.190.128:2181
发送者代码:
package com.example.testcode.demos.controller;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.RequestMapping;
/**
* @description:
* @author: 黎剑
* @create: 2024-04-10 22:20
**/
@RestController
public class KafkaController {
private final static String TOPIC_NAME = "my-replicated-topic";
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
@RequestMapping("/test")
public String send() {
kafkaTemplate.send(TOPIC_NAME, 0, "key", "this is a msg");
return "success";
}
}
消费者代码:
package com.example.testcode.demos.consumer;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.Acknowledgment;
/**
* @description:
* @author: 黎剑
* @create: 2024-04-10 22:22
**/
@Component
public class MyConsumer {
@KafkaListener(topics = "my-replicated-topic", groupId = "testGroup")
public void listenTestGroup(ConsumerRecord<String, String> record, Acknowledgment ack) {
String value = record.value();
System.out.println(value);
System.out.println(record);
//手动提交offset
ack.acknowledge();
}
// 配置多个消费组
@KafkaListener(topics = "my-replicated-topic",groupId = "lijianGroup")
public void listenLiJianGroup(ConsumerRecord<String, String> record, Acknowledgment ack) {
String value = record.value();
System.out.println(value);
System.out.println(record);
ack.acknowledge();
}
}
运行结果如图:
import com.alibaba.fastjson.JSON;
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
/**
* @description:
* @author: 黎剑
* @create: 2024-04-13 02:20
**/
public class MyMsgProducer {
private final static String TOPIC_NAME = "my-replicated-topic";
public static void main(String[] args) throws InterruptedException, ExecutionException {
Properties props = new Properties();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.190.129:9092,192.168.190.130:9092,192.168.190.131:9092");
/*
发出消息持久化机制参数
(1)acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。
(2)acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入。就可以继续发送下一
条消息。这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失。
(3)acks=-1或all: 需要等待 min.insync.replicas(默认为1,推荐配置大于等于2) 这个参数配置的副本个数都成功写入日志,这种策略会保证
只要有一个备份存活就不会丢失数据。这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置。
*/
/*props.put(ProducerConfig.ACKS_CONFIG, "1");
*//*
发送失败会重试,默认重试间隔100ms,重试能保证消息发送的可靠性,但是也可能造成消息重复发送,比如网络抖动,所以需要在
接收者那边做好消息接收的幂等性处理
*//*
props.put(ProducerConfig.RETRIES_CONFIG, 3);
//重试间隔设置
props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);
//设置发送消息的本地缓冲区,如果设置了该缓冲区,消息会先发送到本地缓冲区,可以提高消息发送性能,默认值是33554432,即32MB
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
*//*
kafka本地线程会从缓冲区取数据,批量发送到broker,
设置批量发送消息的大小,默认值是16384,即16kb,就是说一个batch满了16kb就发送出去
*//*
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
*//*
默认值是0,意思就是消息必须立即被发送,但这样会影响性能
一般设置10毫秒左右,就是说这个消息发送完后会进入本地的一个batch,如果10毫秒内,这个batch满了16kb就会随batch一起被发送出去
如果10毫秒内,batch没满,那么也必须把消息发送出去,不能让消息的发送延迟时间太长
*//*
props.put(ProducerConfig.LINGER_MS_CONFIG, 10);*/
//把发送的key从字符串序列化为字节数组
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
//把发送消息value从字符串序列化为字节数组
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
Producer<String, String> producer = new KafkaProducer<String, String>(props);
int msgNum = 5;
final CountDownLatch countDownLatch = new CountDownLatch(msgNum);
for (int i = 1; i <= msgNum; i++) {
Order order = new Order(i, 100 + i, 1, 1000.00);
//指定发送分区
/*ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME
, 0, order.getOrderId().toString(), JSON.toJSONString(order));*/
//未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNum
ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME
, order.getOrderId().toString(), JSON.toJSONString(order));
//等待消息发送成功的同步阻塞方法
/*RecordMetadata metadata = producer.send(producerRecord).get();
System.out.println("同步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
+ metadata.partition() + "|offset-" + metadata.offset());*/
//异步回调方式发送消息
producer.send(producerRecord, new Callback() {
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception != null) {
System.err.println("发送消息失败:" + exception.getStackTrace());
}
if (metadata != null) {
System.out.println("异步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
+ metadata.partition() + "|offset-" + metadata.offset());
}
countDownLatch.countDown();
}
});
//送积分 TODO
}
countDownLatch.await(5, TimeUnit.SECONDS);
producer.close();
}
}
public class MsgConsumer {
private final static String TOPIC_NAME = "my-replicated-topic";
private final static String CONSUMER_GROUP_NAME = "testGroup";
public static void main(String[] args) {
Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.190.129:9092,192.168.190.130:9092,192.168.190.131:9092");
// 消费分组名
props.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_GROUP_NAME);
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"true");
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
/*
当消费主题的是一个新的消费组,或者指定offset的消费方式,offset不存在,那么应该如何消费
latest(默认) :只消费自己启动之后发送到主题的消息
earliest:第一次从头开始消费,以后按照消费offset记录继续消费,这个需要区别于consumer.seekToBeginning(每次都从头开始消费)
*/
//props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
/*
consumer给broker发送心跳的间隔时间,broker接收到心跳如果此时有rebalance发生会通过心跳响应将
rebalance方案下发给consumer,这个时间可以稍微短一点
*/
props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);
/*
服务端broker多久感知不到一个consumer心跳就认为他故障了,会将其踢出消费组,
对应的Partition也会被重新分配给其他consumer,默认是10秒
*/
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);
//一次poll最大拉取消息的条数,如果消费者处理速度很快,可以设置大点,如果处理速度一般,可以设置小点
props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 500);
/*
如果两次poll操作间隔超过了这个时间,broker就会认为这个consumer处理能力太弱,
会将其踢出消费组,将分区分配给别的consumer消费
*/
props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
consumer.subscribe(Arrays.asList(TOPIC_NAME));
// 消费指定分区
// consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
//消息回溯消费
/*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
consumer.seekToBeginning(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));*/
//指定offset消费
/*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
consumer.seek(new TopicPartition(TOPIC_NAME, 0), 10);*/
//从指定时间点开始消费
/*List<PartitionInfo> topicPartitions = consumer.partitionsFor(TOPIC_NAME);
//从1小时前开始消费
long fetchDataTime = new Date().getTime() - 1000 * 60 * 60;
Map<TopicPartition, Long> map = new HashMap<>();
for (PartitionInfo par : topicPartitions) {
map.put(new TopicPartition(topicName, par.partition()), fetchDataTime);
}
Map<TopicPartition, OffsetAndTimestamp> parMap = consumer.offsetsForTimes(map);
for (Map.Entry<TopicPartition, OffsetAndTimestamp> entry : parMap.entrySet()) {
TopicPartition key = entry.getKey();
OffsetAndTimestamp value = entry.getValue();
if (key == null || value == null) continue;
Long offset = value.offset();
System.out.println("partition-" + key.partition() + "|offset-" + offset);
System.out.println();
//根据消费里的timestamp确定offset
if (value != null) {
consumer.assign(Arrays.asList(key));
consumer.seek(key, offset);
}
}*/
while (true) {
/*
* poll() API 是拉取消息的长轮询
*/
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
for (ConsumerRecord<String, String> record : records) {
System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = %s%n", record.partition(),
record.offset(), record.key(), record.value());
}
/*if (records.count() > 0) {
// 手动同步提交offset,当前线程会阻塞直到offset提交成功
// 一般使用同步提交,因为提交之后一般也没有什么逻辑代码了
consumer.commitSync();
// 手动异步提交offset,当前线程提交offset不会阻塞,可以继续处理后面的程序逻辑
consumer.commitAsync(new OffsetCommitCallback() {
@Override
public void onComplete(Map<TopicPartition, OffsetAndMetadata> offsets, Exception exception) {
if (exception != null) {
System.err.println("Commit failed for " + offsets);
System.err.println("Commit failed exception: " + exception.getStackTrace());
}
}
});
}*/
}
}
更多推荐
已为社区贡献1条内容
所有评论(0)