linux下编译

  • 源码下载
git clone https://github.com/edenhill/librdkafka
  • 配置、编译和安装
# 进入目录
cd librdkafka/

# 配置
./configure

# 编译
make

# 安装
make install
  • 头文件和库目录
# 头文件
/usr/local/include/librdkafka
rdkafkacpp.h
rdkafka.h
rdkafka_mock.h
# 库
/usr/local/lib
librdkafka++.a
librdkafka.a
librdkafka++.so
librdkafka.so
librdkafka++.so.1
librdkafka.so.1
librdkafka-static.a

windows下编译

编译环境

visual studio 2019

依赖库

依赖库直接下载源码编译即可。

  • openssl(使用的是1.1.0版本)

在这里插入图片描述

  • zlib(使用的静态库)

在这里插入图片描述

  • libcurl(使用的动态库)

在这里插入图片描述

  • zstd(使用的静态库)

在这里插入图片描述

配置

  • 附加包含目录配置

在这里插入图片描述

  • 附加库目录配置

在这里插入图片描述

  • 附加依赖项配置

在这里插入图片描述

编译

生成c和c++动态库。

在这里插入图片描述

生产者

参数说明

参数描述
bootstrap.servers生产者连接集群所需的broker地址清单。
key.serializer和value.serializer指定发送消息的key和value的序列化类型。
buffer.memoryRecordAccumulator缓冲区总大小,默认32m。
batch.size缓冲区一批数据最大值,默认16k。适当增加该值,可以提高吞吐量,但是如果该值设置太大,会导致数据传输延迟增加。
linger.ms如果数据迟迟未达到batch.size,sender等待linger.time之后就会发送数据。单位ms,默认值是0ms,表示没有延迟。生产环境建议该值大小为5-100ms之间。
acks0:生产者发送过来的数据,不需要等数据落盘应答。 1:生产者发送过来的数据,Leader收到数据后应答。 -1(all):生产者发送过来的数据,Leader+和isr队列里面的所有节点收齐数据后应答。 默认值是-1,-1和all是等价的。
max.in.flight.requests.per.connection允许最多没有返回ack的次数,默认为5,开启幂等性要保证该值是 1-5的数字。
retries当消息发送出现错误的时候,系统会重发消息。retries表示重试次数。默认是int最大值,2147483647。 如果设置了重试,还想保证消息的有序性,需要设置 MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=1否则在重试此失败消息的时候,其他的消息可能发送成功了。
retry.backoff.ms两次重试之间的时间间隔,默认是100ms。
enable.idempotence是否开启幂等性,默认true,开启幂等性。
compression.type生产者发送的所有数据的压缩方式。默认是none,也就是不压缩。 支持压缩类型:none、gzip、snappy、lz4和zstd。

示例

KafkaProducer.h

#ifndef _KAFKA_PRODUCER_H_
#define _KAFKA_PRODUCER_H_

#include "rdkafkacpp.h"
#include <memory>

// 生产者投递报告回调
class ProducerDeliveryReportCb : public RdKafka::DeliveryReportCb 
{
public:
	void dr_cb(RdKafka::Message& message)
	{	
		if (message.err())   // err
		{
            printf("Message delivery failed:%s\n",message.errstr().c_str());
		} 
		else                
		{  
            printf("Message delivered to topic,topicName:%s,partition:%d\n",
                message.topic_name().c_str(),
				message.partition());
		}
	}
};

// 生产者事件回调函数
class ProducerEventCb : public RdKafka::EventCb 
{
public:
	void event_cb(RdKafka::Event &event) 
	{
		switch (event.type()) 
		{
		case RdKafka::Event::EVENT_ERROR:
            printf("RdKafka::Event::EVENT_ERROR: %s\n",
                  RdKafka::err2str(event.err()).c_str());
			break;
		case RdKafka::Event::EVENT_STATS: 
            printf("RdKafka::Event::EVENT_STATS, event:%s\n",
                  event.str().c_str());
			break;
		case RdKafka::Event::EVENT_LOG: 
            printf("RdKafka::Event::EVENT_LOG, fac:%s\n",
                  event.fac().c_str());
			break;
		case RdKafka::Event::EVENT_THROTTLE:
            printf("RdKafka::Event::EVENT_THROTTLE, broker_name:%s\n",
                  event.broker_name().c_str());
			break;
		}
	}
};

// 生产者自定义分区策略回调:partitioner_cb
class HashPartitionerCb : public RdKafka::PartitionerCb 
{
public:
	// @brief 返回 topic 中使用 key 的分区,msg_opaque 置 NULL
	// @return 返回分区,(0, partition_cnt)
	int32_t partitioner_cb(const RdKafka::Topic *topic, const std::string *key,
		int32_t partition_cnt, void *msg_opaque) 
	{
		char msg[128] = {0};
		// 用于自定义分区策略:这里用 hash。例:轮询方式:p_id++ % partition_cnt
		int32_t partition_id = generate_hash(key->c_str(), key->size()) % partition_cnt;
		// 输出:[topic][key][partition_cnt][partition_id],例 [test][6419][2][1]
		sprintf(msg, "HashPartitionerCb:topic:[%s], key:[%s], partition_cnt:[%d], partition_id:[%d]",
			topic->name().c_str(), key->c_str(), partition_cnt, partition_id);
		printf("msg: %s\n", msg);
		return partition_id;
	}

private:
	// 自定义哈希函数 
	static inline unsigned int generate_hash(const char *str, size_t len) 
	{
		unsigned int hash = 5381;
		for (size_t i = 0; i < len; i++)
			hash = ((hash << 5) + hash) + str[i];
		return hash;
	}
};

class CKafkaProducer 
{
  public:
    /**
     * @brief CKafkaProducer
     * @param brokers
     * @param topic
     * @param partition:默认分区数
     */
    explicit CKafkaProducer(const std::string &brokers, const std::string &topic, int partition);
	~CKafkaProducer();

	int Create();

	void Destroy();

    /**
     * @brief push Message to Kafka
     * @param str, message data
     */
    void PushMessage(const std::string &str, const std::string &key);

private:
	std::string                m_brokers;          // Broker 列表,多个使用逗号分隔
	std::string                m_topicStr;         // Topic 名称
	int                        m_partition;        // 分区

	RdKafka::Conf*             m_config;           // Kafka Conf对象
	RdKafka::Conf*             m_topicConfig;      // Topic Conf对象
	RdKafka::Topic*            m_topic;            // Topic对象
	RdKafka::Producer*         m_producer;         // Producer对象
	RdKafka::DeliveryReportCb* m_dr_cb;            // 设置传递回调
	RdKafka::EventCb*          m_event_cb;         // 设置事件回调
	RdKafka::PartitionerCb*    m_partitioner_cb;   // 设置自定义分区回调
};

#endif // _KAFKA_PRODUCER_H_

KafkaProducer.cpp

#include "KafkaProducer.h"

CKafkaProducer::CKafkaProducer(const std::string &brokers, const std::string &topic, int partition) 
: m_brokers(brokers)
, m_topicStr(topic)
, m_partition(partition)
, m_config(nullptr)
, m_topicConfig(nullptr)
, m_topic(nullptr)
, m_producer(nullptr)
, m_dr_cb(nullptr)
, m_event_cb(nullptr)
, m_partitioner_cb(nullptr)
{
}

MyKafkaProducer::~MyKafkaProducer()
{
	Destroy();
}

int MyKafkaProducer::Create()
{
	RdKafka::Conf::ConfResult errCode;           // 创建错误码
	std::string errorStr = "";                   // 返回错误信息   

	do 
	{
		// 创建配置对象
		// 1.1、创建 Kafka Conf 对象
		m_config = RdKafka::Conf::create(RdKafka::Conf::CONF_GLOBAL);
		if (NULL == m_config) 
		{
            printf("Create RdKafka Conf failed.\n");
			break;
		}

		// 设置 Broker 属性       
		// (必要参数)指定 broker 地址列表。格式:host1:port1,host2:port2,...
		errCode = m_config->set("bootstrap.servers", m_brokers, errorStr);
		if (RdKafka::Conf::CONF_OK != errCode) 
		{
            printf("Conf set(bootstrap.servers) failed, errorStr:%s.\n",
                    errorStr.c_str());
			break;
		}

		// 设置生产者投递报告回调
		m_dr_cb = new ProducerDeliveryReportCb; // 创建投递报告回调
		errCode = m_config->set("dr_cb", m_dr_cb, errorStr);    // 异步方式发送数据
		if (RdKafka::Conf::CONF_OK != errCode) 
		{
            printf("Conf set(dr_cb) failed, errorStr:%s.\n",
                    errorStr.c_str());
			break;
		}

		// 设置生产者事件回调
		m_event_cb = new ProducerEventCb; // 创建生产者事件回调
		errCode = m_config->set("event_cb", m_event_cb, errorStr);
		if (RdKafka::Conf::CONF_OK != errCode) 
		{
            printf("Conf set(event_cb) failed, errorStr:%s.\n",
                    errorStr.c_str());
			break;
		}

		// 设置数据统计间隔
		errCode = m_config->set("statistics.interval.ms", "10000", errorStr);
		if (RdKafka::Conf::CONF_OK != errCode) 
		{
            printf("Conf set(statistics.interval.ms) failed, errorStr:%s.\n",
                    errorStr.c_str());
			break;
		}

		// 设置最大发送消息大小
		errCode = m_config->set("message.max.bytes", "10240000", errorStr);
		if (RdKafka::Conf::CONF_OK != errCode) 
		{
            printf("Conf set(message.max.bytes) failed, errorStr:%s.\n",
                    errorStr.c_str());
			break;
		}

		// 2、创建 Topic Conf 对象
		m_topicConfig = RdKafka::Conf::create(RdKafka::Conf::CONF_TOPIC);
		if (NULL == m_topicConfig) 
		{
            printf("Create RdKafka Topic Conf failed.\n");
			break;
		}

		// 设置生产者自定义分区策略回调
		m_partitioner_cb = new HashPartitionerCb; // 创建自定义分区投递回调
		errCode = m_topicConfig->set("partitioner_cb", m_partitioner_cb, errorStr);
		if (RdKafka::Conf::CONF_OK != errCode) 
		{
            printf("Conf set(partitioner_cb) failed, errorStr:%s.\n",
                    errorStr.c_str());
			break;
		}

		// 2、创建对象
		// 2.1、创建 Producer 对象,可以发布不同的主题
		m_producer = RdKafka::Producer::create(m_config, errorStr);
		if (NULL == m_producer) 
		{
            printf("Create Producer failed, errorStr:%s.\n",
                    errorStr.c_str());
			break;
		}

		// 2.2、创建 Topic 对象,可以创建多个不同的 topic 对象
		m_topic = RdKafka::Topic::create(m_producer, m_topicStr, m_topicConfig, errorStr);
		if (NULL == m_topic) 
		{
            printf("Create Topic failed, errorStr:%s.\n",
                    errorStr.c_str());
			break;
		}

        printf("Created producer success.\n");
		return 0;
	}while(0);

	Destroy();
	return -1;
}

void MyKafkaProducer::Destroy()
{
	while (nullptr !=m_producer && m_producer->outq_len() > 0) 
	{
		m_producer->flush(5000);
	}

	if(nullptr != m_config)
	{
		delete m_config;
		m_config = nullptr;
	}

	if(nullptr != m_topicConfig)
	{
		delete m_topicConfig;
		m_topicConfig = nullptr;
	}
	
	if(nullptr != m_topic)
	{
		delete m_topic;
		m_topic = nullptr;
	}

	if(nullptr != m_producer)
	{
		delete m_producer;
		m_producer = nullptr;
	}

	if(nullptr != m_dr_cb)
	{
		delete m_dr_cb;
		m_dr_cb = nullptr;
	}

	if(nullptr != m_event_cb)
	{
		delete m_event_cb;
		m_event_cb = nullptr;
	}

	if(nullptr != m_partitioner_cb)
	{
		delete m_partitioner_cb;
		m_partitioner_cb = nullptr;
	}
}

void MyKafkaProducer::PushMessage(const std::string &str, const std::string &key)
{
	int32_t len = (int32_t)str.length();
	void *payload = const_cast<void *>(static_cast<const void *>(str.data()));

	// produce 方法,生产和发送单条消息到 Broker
	// 如果不加时间戳,内部会自动加上当前的时间戳
	RdKafka::ErrorCode errorCode = m_producer->produce(
		m_topic,                      // 指定发送到的主题
		RdKafka::Topic::PARTITION_UA, // 指定分区,如果为PARTITION_UA则通过
		// partitioner_cb的回调选择合适的分区
		RdKafka::Producer::RK_MSG_COPY, // 消息拷贝
		payload,                        // 消息本身
		len,                            // 消息长度
		&key,                           // 消息key
		NULL
		);

	// 轮询处理
	m_producer->poll(0);
	if (RdKafka::ERR_NO_ERROR != errorCode) 
	{
        printf("Produce failed,errorCode:%s\n",RdKafka::err2str(errorCode).c_str());
		// kafka 队列满,等待 100 ms
		if (RdKafka::ERR__QUEUE_FULL == errorCode) 
		{
			m_producer->poll(100);
		}
	}
}

test.cpp

#include "KafkaProducer.h"
#include <memory>

int main()
{
	std::string brokers = "127.0.0.1:9092";
	std::string topic = "first-topic-test";

    auto producer = std::make_shared<CKafkaProducer>(brokers, topic, 1000);
	if(!producer.get())
		return -1;

	if(0 != producer->Create())
	{
		return -1;
	}

	std::string msg = "test kafka";
	std::string key = "xxx";         // 可选,涉及kafka保序策略
	producer->PushMessage(msg, key);

	producer->Destroy();
	delete producer;

	system("pause");
	return 0;
}

消费者

参数说明

参数描述
bootstrap.servers向Kafka集群建立初始连接用到的host/port列表。
key.deserializer和value.deserializer指定接收消息的key和value的反序列化类型。
group.id标记消费者所属的消费者组。
enable.auto.commit默认值为true,消费者会自动周期性地向服务器提交偏移量。
auto.commit.interval.ms如果设置了 enable.auto.commit 的值为true, 则该值定义了消费者偏移量向Kafka提交的频率,默认5s。
auto.offset.reset当Kafka中没有初始偏移量或当前偏移量在服务器中不存在(如,数据被删除了),该如何处理? earliest:自动重置偏移量到最早的偏移量。 latest:默认,自动重置偏移量为最新的偏移量。 none:如果消费组原来的(previous)偏移量不存在,则向消费者抛异常。 anything:向消费者抛异常。
offsets.topic.num.partitions__consumer_offsets的分区数,默认是50个分区。
heartbeat.interval.msKafka消费者和coordinator之间的心跳时间,默认3s。 该条目的值必须小于 session.timeout.ms ,也不应该高于 session.timeout.ms 的1/3。
session.timeout.msKafka消费者和coordinator之间连接超时时间,默认45s。超过该值,该消费者被移除,消费者组执行再平衡。
max.poll.interval.ms消费者处理消息的最大时长,默认是5分钟。超过该值,该消费者被移除,消费者组执行再平衡。
fetch.min.bytes默认1个字节。消费者获取服务器端一批消息最小的字节数。
fetch.max.wait.ms默认500ms。如果没有从服务器端获取到一批数据的最小字节数。该时间到,仍然会返回数据。
fetch.max.bytes默认Default: 52428800(50 m)。消费者获取服务器端一批消息最大的字节数。如果服务器端一批次的数据大于该值(50m)仍然可以拉取回来这批数据,因此,这不是一个绝对最大值。一批次的大小受message.max.bytes (broker config)or max.message.bytes (topic config)影响。
max.poll.records一次poll拉取数据返回消息的最大条数,默认是500条。

示例

KafkaConsumer.h

#ifndef _KAFKA_CONSUMER_H_
#define _KAFKA_CONSUMER_H_

#include "rdkafkacpp.h"
#include <thread>
#include <mutex>

// 设置事件回调
class ConsumerEventCb : public RdKafka::EventCb 
{
public:
	void event_cb(RdKafka::Event &event) 
	{
		switch (event.type()) 
		{
		case RdKafka::Event::EVENT_ERROR:
			break;
		case RdKafka::Event::EVENT_STATS:
			break;
		case RdKafka::Event::EVENT_LOG:
			break;
		case RdKafka::Event::EVENT_THROTTLE:
			break;
		default:
			break;
		}
	}
};

// 设置消费者组再平衡回调
// 注册该函数会关闭 rdkafka 的自动分区赋值和再分配
class ConsumerRebalanceCb : public RdKafka::RebalanceCb 
{
private:
	// 打印当前获取的分区
	static void printTopicPartition(const std::vector<RdKafka::TopicPartition *>& partitions) 
	{
		for (unsigned int i = 0; i < partitions.size(); i++) 
		{
            printf("count:%d, topic:%s,partition:%d\n",
                  i, 
			      partitions[i]->topic().c_str(),
				  partitions[i]->partition());
		}
	}

public:
	// 消费者组再平衡回调
	void rebalance_cb(RdKafka::KafkaConsumer *consumer, RdKafka::ErrorCode err,
		std::vector<RdKafka::TopicPartition *> &partitions) 
	{
        printf("RebalanceCb: %s\n",RdKafka::err2str(err).c_str());
		printTopicPartition(partitions);

		// 分区分配成功
		if (RdKafka::ERR__ASSIGN_PARTITIONS == err) 
		{
			// 消费者订阅这些分区
			consumer->assign(partitions);
			// 获取消费者组本次订阅的分区数量,可以属于不同的topic
			m_partitionCount = (int)partitions.size();
		} 
		else   // 分区分配失败
		{
			// 消费者取消订阅所有的分区
			consumer->unassign();
			// 消费者订阅分区的数量为0
			m_partitionCount = 0;
		}
	}

private:
	int m_partitionCount;    // 消费者组本次订阅的分区数量
};

class CKafkaConsumer 
{
public:
	/**
     * @brief CKafkaConsumer
     * @param brokers
	 * @param groupID:消费者组名称
     * @param topics
     * @param partition:默认分区数
     */
	explicit CKafkaConsumer(const std::string &brokers,
						   const std::string &groupID,
						   const std::vector<std::string> &topics,
						   int partition);
	~CKafkaConsumer();

	int Create();

	void Destroy();

	void PullMessage();

public:
	void OnRecv();

private:
	void ConsumeMsg_(RdKafka::Message *msg, void *opaque);

private:
    std::string m_brokers;
    std::string m_groupID;
    std::vector<std::string> m_topicVector;
    int m_partition;

    RdKafka::Conf*             m_config;
    RdKafka::Conf*             m_topicConfig;
    RdKafka::KafkaConsumer*    m_consumer;
    RdKafka::EventCb*          m_event_cb;
    RdKafka::RebalanceCb*      m_rebalance_cb;

	std::thread m_thread;
	bool m_running;
    typedef std::lock_guard<std::recursive_mutex> RecursiveGuard;
	std::recursive_mutex mutex_; 
};

#endif // _KAFKA_CONSUMER_H_

KafkaConsumer.cpp

#include "MyKafkaConsumer.h"

static int ConsumerWorker(void* param)
{
	CKafkaConsumer* consumer = (CKafkaConsumer*)param;
	if (consumer)
	{
		consumer->OnRecv();
		return 0;
	}

	return -1;
}

CKafkaConsumer::CKafkaConsumer(const std::string &brokers, const std::string &groupID, const std::vector<std::string> &topics, int partition) 
: m_brokers(brokers)
, m_groupID(groupID)
, m_topicVector(topics)
, m_partition(partition)
, m_running(true)
{
}

CKafkaConsumer::~CKafkaConsumer()
{
	Destroy();
}

int CKafkaConsumer::Create()
{
	std::string errorStr;
	RdKafka::Conf::ConfResult errorCode;

	do 
	{
		// 1、创建配置对象
		// 1.1、构造 consumer conf 对象
		m_config = RdKafka::Conf::create(RdKafka::Conf::CONF_GLOBAL);
		if(nullptr == m_config)
		{
            printf("Create RdKafka Conf failed.\n");
			break;
		}

		// 必要参数1:指定 broker 地址列表
		errorCode = m_config->set("bootstrap.servers", m_brokers, errorStr);
		if (RdKafka::Conf::CONF_OK != errorCode) 
		{
            printf("Conf set(bootstrap.servers) failed, errorStr:%s.\n",
                  errorStr.c_str());
			break;
		}

		// 必要参数2:设置消费者组 id
		errorCode = m_config->set("group.id", m_groupID, errorStr);
		if (RdKafka::Conf::CONF_OK != errorCode) 
		{
            printf("Conf set(group.id) failed, errorStr:%s.\n",
                  errorStr.c_str());
			break;
		}

		// 设置事件回调
		m_event_cb = new ConsumerEventCb;
		errorCode = m_config->set("event_cb", m_event_cb, errorStr);
		if (RdKafka::Conf::CONF_OK != errorCode) 
		{
            printf("Conf set(event_cb) failed, errorStr:%s.\n",
                  errorStr.c_str());
			break;
		}

		// 设置消费者组再平衡回调
		m_rebalance_cb = new ConsumerRebalanceCb;
		errorCode = m_config->set("rebalance_cb", m_rebalance_cb, errorStr);
		if (RdKafka::Conf::CONF_OK != errorCode) 
		{
            printf("Conf set(rebalance_cb) failed, errorStr:%s.\n",
                  errorStr.c_str());
			break;
		}

		// 当消费者到达分区结尾,发送 RD_KAFKA_RESP_ERR__PARTITION_EOF 事件
		errorCode = m_config->set("enable.partition.eof", "false", errorStr);
		if (RdKafka::Conf::CONF_OK != errorCode) 
		{
            printf("Conf set(enable.partition.eof) failed, errorStr:%s.\n",
                  errorStr.c_str());
			break;
		}

		// 每次最大拉取的数据大小
		errorCode = m_config->set("max.partition.fetch.bytes", "1024000", errorStr);
		if (RdKafka::Conf::CONF_OK != errorCode) 
		{
            printf("Conf set(max.partition.fetch.bytes) failed, errorStr:%s.\n",
                  errorStr.c_str());
			break;
		}

		// 设置分区分配策略:range、roundrobin、cooperative-sticky
		errorCode = m_config->set("partition.assignment.strategy", "range", errorStr);
		if (RdKafka::Conf::CONF_OK != errorCode) 
		{
            printf("Conf set(partition.assignment.strategy) failed, errorStr:%s.\n",
                  errorStr.c_str());
			break;
		}

		// 心跳探活超时时间---1s
		errorCode = m_config->set("session.timeout.ms", "6000", errorStr);
		if (RdKafka::Conf::CONF_OK != errorCode) 
		{
            printf("Conf set(session.timeout.ms) failed, errorStr:%s.\n",
                  errorStr.c_str());
			break;
		}

		// 心跳保活间隔
		errorCode = m_config->set("heartbeat.interval.ms", "2000", errorStr);
		if (RdKafka::Conf::CONF_OK != errorCode) 
		{
            printf("Conf set(heartbeat.interval.ms) failed, errorStr:%s.\n",
                  errorStr.c_str());
			break;
		}

		// 1.2、创建 topic conf 对象
		m_topicConfig = RdKafka::Conf::create(RdKafka::Conf::CONF_TOPIC);
		if (nullptr == m_topicConfig) 
		{
            printf("Create RdKafka Topic Conf failed.\n");
			break;
		}

		// 必要参数3:设置新到来消费者的消费起始位置,latest 消费最新的数据,earliest 从头开始消费
		errorCode = m_topicConfig->set("auto.offset.reset", "latest", errorStr);
		if (RdKafka::Conf::CONF_OK != errorCode) 
		{
            printf("Topic Conf set(auto.offset.reset) failed, errorStr:%s.\n",
                  errorStr.c_str());
			break;
		}

		// 默认 topic 配置,用于自动订阅 topics
		errorCode = m_config->set("default_topic_conf", m_topicConfig, errorStr);
		if (RdKafka::Conf::CONF_OK != errorCode) 
		{
            printf("Conf set(default_topic_conf) failed, errorStr:%s.\n",
                  errorStr.c_str());
			break;
		}

		// 2、创建 Consumer 对象
		m_consumer = RdKafka::KafkaConsumer::create(m_config, errorStr);
		if (nullptr == m_consumer) 
		{
            printf("Create KafkaConsumer failed, errorStr:%s.\n",
                  errorStr.c_str());
			break;
		}

        printf("Created consumer success, consumerName:%s.\n",
                  m_consumer->name().c_str());
		return 0;
	} while (0);

	Destroy();
	return -1;
}

void CKafkaConsumer::Destroy()
{
	m_running = false;
	if (m_thread.joinable())
		m_thread.join();

	if(nullptr != m_consumer)
		m_consumer->close();

	if(nullptr != m_config)
	{
		delete m_config;
		m_config = nullptr;
	}

	if(nullptr != m_topicConfig)
	{
		delete m_topicConfig;
		m_topicConfig = nullptr;
	}

	if(nullptr != m_consumer)
	{
		delete m_consumer;
		m_consumer = nullptr;
	}
	
	if(nullptr != m_event_cb)
	{
		delete m_event_cb;
		m_event_cb = nullptr;
	}

	if(nullptr != m_rebalance_cb)
	{
		delete m_rebalance_cb;
		m_rebalance_cb = nullptr;
	}
}

void CKafkaConsumer::PullMessage()
{
    m_thread = std::thread(ConsumerWorker, this);
}

void CKafkaConsumer::ConsumeMsg_(RdKafka::Message *msg, void *opaque)
{
	switch (msg->err()) 
	{
	case RdKafka::ERR__TIMED_OUT: // 超时
		break;
	case RdKafka::ERR_NO_ERROR:   // 有消息进来
        printf("Recv Message. topic:%s, partition:[%d], key:%s, payload:%s\n",
            msg->topic_name().c_str(), 
			msg->partition(), 
			msg->key()->c_str(), 
			(char *)msg->payload());
		break;
	default:
		break;
	}
}

void CKafkaConsumer::OnRecv()
{
	if(nullptr == m_consumer)
		return;

	// 后续可扩展
	std::vector<std::string> topicVector;
	{
		RecursiveGuard mtx(mutex_);
		topicVector = m_topicVector;
	}

	// 1、订阅主题
	RdKafka::ErrorCode errorCode = m_consumer->subscribe(topicVector);
	if (RdKafka::ERR_NO_ERROR != errorCode) 
	{
        printf("Subscribe failed, errorStr:%s\n", RdKafka::err2str(errorCode).c_str());
		return;
	}

	// 2、拉取并消费消息
	while (m_running) 
	{
		RdKafka::Message *msg = m_consumer->consume(1000); // 1000ms超时
		if(nullptr != msg)
		{
			// 消费消息
			ConsumeMsg_(msg, nullptr);
			delete msg;
            msg = nullptr;
		}
	}

	// 同步提交,Consumer 关闭前调用,等待 broker 返回读取消息
	if(nullptr != m_consumer)
		m_consumer->commitSync(); 
}

test.cpp

#include "KafkaConsumer.h"
#include <memory>

int main()
{
	std::string brokers = "127.0.0.1:9092";
	std::string groupID = "test";
	std::vector<std::string> topics;
	topics.push_back("first-topic-test");

	auto comsumer = std::make_shared<CKafkaConsumer>(brokers, groupID, topics, 1000);
	if(!comsumer.get())
		return -1;

	if(0 != comsumer->Create())
		return -1;
	
	comsumer->PullMessage();
    
    system("pause");
	return 0;
}
Logo

Kafka开源项目指南提供详尽教程,助开发者掌握其架构、配置和使用,实现高效数据流管理和实时处理。它高性能、可扩展,适合日志收集和实时数据处理,通过持久化保障数据安全,是企业大数据生态系统的核心。

更多推荐