kafka实现延迟队列
首先说一下延迟队列这个东西,实际上实现他的方法有很多,kafka实现并不是一个最好的选择,例如redis的zset可以实现,rocketmq天然的可以实现,rabbitmq也可以实现。如果切换前几种方案成本高的情况下,那么就使用kafka实现,实际上kafka实现延迟队列也是借用了rocketmq的延迟队列思想,rocketmq的延迟时间是固定的几个,并不是自定义的,但是kafka可以实现自定义的
前言
首先说一下延迟队列这个东西,实际上实现他的方法有很多,kafka实现并不是一个最好的选择,例如redis的zset可以实现,rocketmq天然的可以实现,rabbitmq也可以实现。如果切换前几种方案成本高的情况下,那么就使用kafka实现,实际上kafka实现延迟队列也是借用了rocketmq的延迟队列思想,rocketmq的延迟时间是固定的几个,并不是自定义的,但是kafka可以实现自定义的延迟时间,但是不能过多,因为是依据topic实现的,接下来我使用go实现简单的kafka的延迟队列。
实现方案
1、首先创建两个topic、一个delayTopic、一个realTopic
2、生产者把消息先发送到delayTopic
3、延迟服务再把delayTopic里面的消息超过我们所设置的时间写入到realTopic
4、消费者再消费realTopic里面的数据即可
具体实现
1、生产者发送消息到延迟队列
msg := &sarama.ProducerMessage{
Topic: kafka.DelayTopic,
Timestamp: time.Now(),
Key: sarama.StringEncoder("rta_key"),
Value: sarama.StringEncoder(riStr),
}
partition, offset, err := kafka.KafkaDelayQueue.SendMessage(msg)
2、延迟服务的消费者(消费延迟队列里面的数据到real队列)
const (
DelayTime = time.Minute * 5
DelayTopic = "delayTopic"
RealTopic = "realTopic"
)
// KafkaDelayQueueProducer 延迟队列生产者,包含了生产者和延迟服务
type KafkaDelayQueueProducer struct {
producer sarama.SyncProducer // 生产者
delayTopic string // 延迟服务主题
}
// NewKafkaDelayQueueProducer 创建延迟队列生产者
// producer 生产者
// delayServiceConsumerGroup 延迟服务消费者组
// delayTime 延迟时间
// delayTopic 延迟服务主题
// realTopic 真实队列主题
func NewKafkaDelayQueueProducer(producer sarama.SyncProducer, delayServiceConsumerGroup sarama.ConsumerGroup,
delayTime time.Duration, delayTopic, realTopic string, log *log) *KafkaDelayQueueProducer {
var (
signals = make(chan os.Signal, 1)
)
signal.Notify(signals, syscall.SIGTERM, syscall.SIGINT, os.Interrupt)
// 启动延迟服务
consumer := NewDelayServiceConsumer(producer, delayTime, realTopic, log)
log.Info("[NewKafkaDelayQueueProducer] delay queue consumer start")
go func() {
for {
if err := delayServiceConsumerGroup.Consume(context.Background(),
[]string{delayTopic}, consumer); err != nil {
log.Error("[NewKafkaDelayQueueProducer] delay queue consumer failed,err: ", zap.Error(err))
break
}
time.Sleep(2 * time.Second)
log.Info("[NewKafkaDelayQueueProducer] 检测消费函数是否一直执行")
// 检查是否接收到中断信号,如果是则退出循环
select {
case sin := <-signals:
consumer.Logger.Info("[NewKafkaDelayQueueProducer]get signal,", zap.Any("signal", sin))
return
default:
}
}
log.Info("[NewKafkaDelayQueueProducer] consumer func exit")
}()
log.Info("[NewKafkaDelayQueueProducer] return KafkaDelayQueueProducer")
return &KafkaDelayQueueProducer{
producer: producer,
delayTopic: delayTopic,
}
}
// SendMessage 发送消息
func (q *KafkaDelayQueueProducer) SendMessage(msg *sarama.ProducerMessage) (partition int32, offset int64, err error) {
msg.Topic = q.delayTopic
return q.producer.SendMessage(msg)
}
// DelayServiceConsumer 延迟服务消费者
type DelayServiceConsumer struct {
producer sarama.SyncProducer
delay time.Duration
realTopic string
Logger *log.DomobLog
}
func NewDelayServiceConsumer(producer sarama.SyncProducer, delay time.Duration,
realTopic string, log *log.DomobLog) *DelayServiceConsumer {
return &DelayServiceConsumer{
producer: producer,
delay: delay,
realTopic: realTopic,
Logger: log,
}
}
func (c *DelayServiceConsumer) ConsumeClaim(session sarama.ConsumerGroupSession,
claim sarama.ConsumerGroupClaim) error {
c.Logger.Info("[delaye ConsumerClaim] cc")
for message := range claim.Messages() {
// 如果消息已经超时,把消息发送到真实队列
now := time.Now()
c.Logger.Info("[delay ConsumeClaim] out",
zap.Any("send real topic res", now.Sub(message.Timestamp) >= c.delay),
zap.Any("message.Timestamp", message.Timestamp),
zap.Any("c.delay", c.delay),
zap.Any("claim.Messages len", len(claim.Messages())),
zap.Any("sub:", now.Sub(message.Timestamp)),
zap.Any("meskey:", message.Key),
zap.Any("message:", string(message.Value)),
)
if now.Sub(message.Timestamp) >= c.delay {
c.Logger.Info("[delay ConsumeClaim] jinlai", zap.Any("mes", string(message.Value)))
_, _, err := c.producer.SendMessage(&sarama.ProducerMessage{
Topic: c.realTopic,
Timestamp: message.Timestamp,
Key: sarama.ByteEncoder(message.Key),
Value: sarama.ByteEncoder(message.Value),
})
if err != nil {
c.Logger.Info("[delay ConsumeClaim] delay already send to real topic failed", zap.Error(err))
return nil
}
if err == nil {
session.MarkMessage(message, "")
c.Logger.Info("[delay ConsumeClaim] delay already send to real topic success")
continue
}
}
// 否则休眠一秒
time.Sleep(time.Second)
return nil
}
c.Logger.Info("[delay ConsumeClaim] ph",
zap.Any("partitiion", claim.Partition()),
zap.Any("HighWaterMarkOffset", claim.HighWaterMarkOffset()))
c.Logger.Info("[delay ConsumeClaim] delay consumer end")
return nil
}
func (c *DelayServiceConsumer) Setup(sarama.ConsumerGroupSession) error {
return nil
}
func (c *DelayServiceConsumer) Cleanup(sarama.ConsumerGroupSession) error {
return nil
}
这个方法整体逻辑就是不断消费延迟队列里面的消息,判断消息时间是否大于现在,如果大于现在说明消息超时了,就把该消息发送到真实的队列里面去了,真实队列是一直在消费的。如果没超时的话就不会标记消息,还会重新消费,消费成功会标记该消息。
重点:我在测试的时候是一秒拉一次消息,但这个也不是太准时,不过最终结果差距不大,想知道具体怎么消费的可以自己debug
3、真实队列里面的消费逻辑
type ConsumerRta struct {
Logger *log
}
func ConsumerToRequestRta(consumerGroup sarama.ConsumerGroup, lg *log) {
var (
signals = make(chan os.Signal, 1)
wg = &sync.WaitGroup{}
)
signal.Notify(signals, syscall.SIGTERM, syscall.SIGINT, os.Interrupt)
wg.Add(1)
// 启动消费者协程
go func() {
defer wg.Done()
consumer := NewConsumerRta(lg)
consumer.Logger.Info("[ConsumerToRequestRta] consumer group start")
// 执行消费者组消费
for {
if err := consumerGroup.Consume(context.Background(), []string{kafka.RealTopic}, consumer); err != nil {
consumer.Logger.Error("[ConsumerToRequestRta] Error from consumer group:", zap.Error(err))
break
}
time.Sleep(2 * time.Second) // 等待一段时间后重试
// 检查是否接收到中断信号,如果是则退出循环
select {
case sin := <-signals:
consumer.Logger.Info("get signal,", zap.Any("signal", sin))
return
default:
}
}
}()
wg.Wait()
lg.Info("[ConsumerToRequestRta] consumer end & exit")
}
func NewConsumerRta(lg *log) *ConsumerRta {
return &ConsumerRta{
Logger: lg,
}
}
func (c *ConsumerRta) ConsumeClaim(session sarama.ConsumerGroupSession,
claim sarama.ConsumerGroupClaim) error {
for message := range claim.Messages() {
// 消费逻辑
session.MarkMessage(message, "")
return nil
}
return nil
}
func (c *ConsumerRta) Setup(sarama.ConsumerGroupSession) error {
return nil
}
func (c *ConsumerRta) Cleanup(sarama.ConsumerGroupSession) error {
return nil
}
4、kafka配置
type KafkaConfig struct {
BrokerList []string
Topic []string
GroupId []string
Cfg *sarama.Config
PemPath string
KeyPath string
CaPemPath string
}
var (
Producer sarama.SyncProducer
ConsumerGroupReal sarama.ConsumerGroup
ConsumerGroupDelay sarama.ConsumerGroup
KafkaDelayQueue *KafkaDelayQueueProducer
)
func NewKafkaConfig(cfg KafkaConfig) (err error) {
Producer, err = sarama.NewSyncProducer(cfg.BrokerList, cfg.Cfg)
if err != nil {
return err
}
ConsumerGroupReal, err = sarama.NewConsumerGroup(cfg.BrokerList, cfg.GroupId[0], cfg.Cfg)
if err != nil {
return err
}
ConsumerGroupDelay, err = sarama.NewConsumerGroup(cfg.BrokerList, cfg.GroupId[1], cfg.Cfg)
if err != nil {
return err
}
return nil
}
func GetKafkaDelayQueue(log *log) {
KafkaDelayQueue = NewKafkaDelayQueueProducer(Producer, ConsumerGroupDelay, DelayTime, DelayTopic, RealTopic, log)
}
这个里面我没有怎么封装,可以自行封装,使用的是IBM的sarama客户端
总结
基本上就是以上三步实现,里面的一些log日志可以传递自己的log日志即可,使用的是消费者组消费的,添加上自己的topic和groupid即可
重点:以上实现延迟时间可能不是太精准,我使用的时候还是有点小小的误差,不过误差不大,强相关业务还是使用其他专业实现延迟队列mq,或使用自行方案
更多推荐
所有评论(0)