springboot整合ELK+kafka采集日志
在分布式的项目中,各功能模块产生的日志比较分散,同时为满足性能要求,同一个微服务会集群化部署,当某一次业务报错后,如果不能确定产生的节点,那么只能逐个节点去查看日志文件;logback中RollingFileAppender,ConsoleAppender这类同步化记录器也降低系统性能,综上一些问题,可能考虑采用ELK (elasticsearch+logstash+kibana)配合消息中间件去
一、背景介绍
在分布式的项目中,各功能模块产生的日志比较分散,同时为满足性能要求,同一个微服务会集群化部署,当某一次业务报错后,如果不能确定产生的节点,那么只能逐个节点去查看日志文件;logback中RollingFileAppender,ConsoleAppender这类同步化记录器也降低系统性能,综上一些问题,可能考虑采用ELK (elasticsearch+logstash+kibana)配合消息中间件去异步采集,统一展示去解决。
这里之所以要加入kafka是因为
- 如果直接利用logstash同步日志,则每个节点都需要部署logstash,且logstash会严重消耗性能、浪费资源;
- 当访问量特别高时,产生的日志速度也会特别快,kafka可以削峰限流、降低logstash的压力;
- 当logstash故障时消息可以存储到kafka中不会丢失。
二、 整体流程图
三、搭建kafka+zk环境
1、创建文件夹
mkdir /usr/elklog/kafka
2、在创建好的文件夹下创建文件docker-compose.yml
version: "2"
services:
zookeeper:
image: docker.io/bitnami/zookeeper:3.8
ports:
- "2181:2181"
environment:
- ALLOW_ANONYMOUS_LOGIN=yes
networks:
- es_default
kafka:
image: docker.io/bitnami/kafka:3.2
user: root
ports:
- "9092:9092"
environment:
- ALLOW_PLAINTEXT_LISTENER=yes
- KAFKA_CFG_ZOOKEEPER_CONNECT=zookeeper:2181
- KAFKA_CFG_ADVERTISED_LISTENERS=PLAINTEXT://192.168.3.22:9092 #这里替换为你宿主机IP或host,在集群下,各节点会把这个地址注册到集群,并把主节点的暴露给客户端,不要注册localhost
# - KAFKA_CFG_LISTENERS=PLAINTEXT://0.0.0.0:9092
depends_on:
- zookeeper
networks:
- es_default
networks:
es_default:
name: es_default
# external: true
volumes:
zookeeper_data:
driver: local
kafka_data:
driver: local
3、在docker-compose.yml同级目录中输入启动命令
docker-compose up -d
这里用的是docker-compose方式安装,安装之前需要先安装好docker和docker-compose
docker安装方式:https://blog.csdn.net/qq_38639813/article/details/129384923
docker-compose安装方式:https://blog.csdn.net/qq_38639813/article/details/129751441
四、搭建elk环境
1、拉取elk所需镜像
docker pull elasticsearch:7.10.1
docker pull kibana:7.10.1
docker pull elastic/metricbeat:7.10.1
docker pull elastic/logstash:7.10.1
2、创建文件夹:
mkdir /usr/elklog/elk
mkdir /usr/elklog/elk/logstash
mkdir /usr/elklog/elk/logstash/pipeline
mkdir /usr/elklog/elk/es
mkdir /usr/elklog/elk/es/data
3、给data文件夹授权
chmod 777 /usr/elklog/elk/es/data
4、在/usr/elklog/elk/logstash/pipeline中创建logstash.conf
logstash.conf文件作用是将kafka中的日志消息获取出来 ,再推送给elasticsearch
input {
kafka {
bootstrap_servers => "192.168.3.22:9092" #kafka的地址,替换为你自己的
client_id => "logstash"
auto_offset_reset => "latest"
consumer_threads => 5
topics => ["demoCoreKafkaLog","webapiKafkaApp"] #获取哪些topic,在springboot项目的logback-spring.xml中指定
type => demo #自定义
# codec => "json"
}
}
output {
stdout { }
elasticsearch {
hosts => ["http://192.168.3.22:9200"] #es的地址
index => "demolog-%{+YYYY.MM.dd}" #这里将会是创建的索引名,后续 kibana将会用不同索引区别
#user => "elastic"
#password => "changeme"
}
}
也可以按照如下方式去写
input{
kafka{
bootstrap_servers => "192.168.3.22:9092" #kafka的地址,替换为你自己的
client_id => "logstash"
auto_offset_reset => "latest"
consumer_threads => 5
topics => ["demoCoreKafkaLog","webapiKafkaApp"] #获取哪些topic,在springboot项目的logback-spring.xml中指定
type => "json" #输出的结果也就是message中的信息以json的格式展示
codec => json {
charset => "UTF-8"
}
}
}
output {
if [@metadata][kafka][topic] == "demoCoreKafkaLog" {
elasticsearch {
hosts => "http://192.168.3.22:9200"
index => "demoCoreKafkaLog" #这里将会是创建的索引名,后续 kibana将会用不同索引区别
timeout => 300
}
}
if [@metadata][kafka][topic] == "webapiKafkaApp" {
elasticsearch {
hosts => "http://192.168.3.22:9200"
index => "webapiKafkaApp" #这里将会是创建的索引名,后续 kibana将会用不同索引区别
timeout => 300
}
}
stdout {}
}
5、在/usr/elklog/elk中创建docker-compose.yml
version: "2"
services:
elasticsearch:
image: elasticsearch:7.10.1
restart: always
privileged: true
ports:
- "9200:9200"
- "9300:9300"
volumes:
- /usr/elklog/elk/es/data:/usr/share/elasticsearch/data
environment:
- discovery.type=single-node
networks:
- es_default
kibana:
image: kibana:7.10.1
restart: always
privileged: true
ports:
- "5601:5601"
environment:
- ELASTICSEARCH_URL=http://192.168.3.22:9200
depends_on:
- elasticsearch
networks:
- es_default
metricbeat:
image: elastic/metricbeat:7.10.1
restart: always
user: root
environment:
- ELASTICSEARCH_HOSTS=http://192.168.3.22:9200
depends_on:
- elasticsearch
- kibana
command: -E setup.kibana.host="192.168.3.22:5601" -E setup.dashboards.enabled=true -E setup.template.overwrite=false -E output.elasticsearch.hosts=["192.168.3.22:9200"] -E setup.ilm.overwrite=true
networks:
- es_default
logstash:
image: elastic/logstash:7.10.1
restart: always
user: root
volumes:
- /usr/elklog/elk/logstash/pipeline:/usr/share/logstash/pipeline/
depends_on:
- elasticsearch
- kibana
networks:
- es_default
networks:
es_default:
driver: bridge
name: es_default
6、启动服务
docker-compose up -d
检验es是否安装成功:http://192.168.3.22:9200
检验kibana是否安装成功:192.168.3.22:5601
7、kibana设置中文
从容器中复制出kibana.yml,修改该文件,再复制回去,重启容器:
docker cp elk-kibana-1:/usr/share/kibana/config/kibana.yml kibana.yml
在这个文件最后加上: i18n.locale: "zh-CN"
docker cp kibana.yml elk-kibana-1:/usr/share/kibana/config/kibana.yml
重启kibana容器便可
五、springboot代码
1、引入依赖
<!-- Kafka资源的引入 -->
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
</dependency>
<dependency>
<groupId>com.github.danielwegener</groupId>
<artifactId>logback-kafka-appender</artifactId>
<version>0.2.0-RC1</version>
</dependency>
<dependency>
<groupId>net.logstash.logback</groupId>
<artifactId>logstash-logback-encoder</artifactId>
<version>6.4</version>
</dependency>
2、创建KafkaOutputStream
package com.elk.log;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.io.IOException;
import java.io.OutputStream;
import java.nio.charset.Charset;
public class KafkaOutputStream extends OutputStream {
Producer logProducer;
String topic;
public KafkaOutputStream(Producer producer, String topic) {
this.logProducer = producer;
this.topic = topic;
}
@Override
public void write(int b) throws IOException {
this.logProducer.send(new ProducerRecord<>(this.topic, b));
}
@Override
public void write(byte[] b) throws IOException {
this.logProducer.send(new ProducerRecord<String, String>(this.topic, new String(b, Charset.defaultCharset())));
}
@Override
public void flush() throws IOException {
this.logProducer.flush();
}
}
3、创建KafkaAppender
package com.elk.log;
import ch.qos.logback.classic.spi.ILoggingEvent;
import ch.qos.logback.core.Layout;
import ch.qos.logback.core.OutputStreamAppender;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.springframework.util.StringUtils;
import java.io.OutputStream;
import java.util.Properties;
public class KafkaAppender<E> extends OutputStreamAppender<E> {
private Producer logProducer;
private String bootstrapServers;
private Layout<E> layout;
private String topic;
public void setLayout(Layout<E> layout) {
this.layout = layout;
}
public void setBootstrapServers(String bootstrapServers) {
this.bootstrapServers = bootstrapServers;
}
public void setTopic(String topic) {
this.topic = topic;
}
@Override
protected void append(E event) {
if (event instanceof ILoggingEvent) {
String msg = layout.doLayout(event);
ProducerRecord<String, String> producerRecord = new ProducerRecord<>(topic, 0,((ILoggingEvent) event).getLevel().toString(), msg);
logProducer.send(producerRecord);
}
}
@Override
public void start() {
if (StringUtils.isEmpty(topic)) {
topic = "Kafka-app-log";
}
if (StringUtils.isEmpty(bootstrapServers)) {
bootstrapServers = "localhost:9092";
}
logProducer = createProducer();
OutputStream targetStream = new KafkaOutputStream(logProducer, topic);
super.setOutputStream(targetStream);
super.start();
}
@Override
public void stop() {
super.stop();
if (logProducer != null) {
logProducer.close();
}
}
//创建生产者
private Producer createProducer() {
synchronized (this) {
if (logProducer != null) {
return logProducer;
}
Properties props = new Properties();
props.put("bootstrap.servers", bootstrapServers);
//判断是否成功,我们指定了“all”将会阻塞消息 0.关闭 1.主broker确认 -1(all).所在节点都确认
props.put("acks", "0");
//失败重试次数
props.put("retries", 0);
//延迟100ms,100ms内数据会缓存进行发送
props.put("linger.ms", 100);
//超时关闭连接
//props.put("connections.max.idle.ms", 10000);
props.put("batch.size", 16384);
props.put("buffer.memory", 33554432);
//该属性对性能影响非常大,如果吞吐量不够,消息生产过快,超过本地buffer.memory时,将阻塞1000毫秒,等待有空闲容量再继续
props.put("max.block.ms",1000);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
return new KafkaProducer<String, String>(props);
}
}
}
4、创建logback-spring.xml,放到application.yml的同级目录
<?xml version="1.0" encoding="UTF-8"?>
<configuration scan="true" scanPeriod="60 seconds">
<!-- <include resource="org/springframework/boot/logging/logback/base.xml"/>-->
<logger name="com.elk" level="info"/>
<!-- 定义日志文件 输入位置 -->
<property name="logPath" value="logs" />
<!-- <property name="logPath" value="D:/logs/truckDispatch" />-->
<!-- 控制台输出日志 -->
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger -%msg%n</pattern>
<charset class="java.nio.charset.Charset">UTF-8</charset>
</encoder>
</appender>
<!-- INFO日志文件 -->
<appender name="infoAppender" class="ch.qos.logback.core.rolling.RollingFileAppender">
<filter class="ch.qos.logback.classic.filter.LevelFilter">
<level>INFO</level>
<onMatch>ACCEPT</onMatch>
<onMismatch>DENY</onMismatch>
</filter>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<!-- 文件名称 -->
<fileNamePattern>${logPath}\%d{yyyyMMdd}\info.log</fileNamePattern>
<!-- 文件最大保存历史天数 -->
<MaxHistory>30</MaxHistory>
</rollingPolicy>
<encoder>
<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger - %msg%n</pattern>
<charset class="java.nio.charset.Charset">UTF-8</charset>
</encoder>
</appender>
<!-- DEBUG日志文件 -->
<appender name="debugAppender" class="ch.qos.logback.core.rolling.RollingFileAppender">
<filter class="ch.qos.logback.classic.filter.LevelFilter">
<level>DEBUG</level>
<onMatch>ACCEPT</onMatch>
<onMismatch>DENY</onMismatch>
</filter>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<!-- 文件名称 -->
<fileNamePattern>${logPath}\%d{yyyyMMdd}\debug.log</fileNamePattern>
<!-- 文件最大保存历史天数 -->
<MaxHistory>30</MaxHistory>
</rollingPolicy>
<encoder>
<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger - %msg%n</pattern>
<charset class="java.nio.charset.Charset">UTF-8</charset>
</encoder>
</appender>
<!-- WARN日志文件 -->
<appender name="warnAppender" class="ch.qos.logback.core.rolling.RollingFileAppender">
<filter class="ch.qos.logback.classic.filter.LevelFilter">
<level>WARN</level>
<onMatch>ACCEPT</onMatch>
<onMismatch>DENY</onMismatch>
</filter>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<!-- 文件名称 -->
<fileNamePattern>${logPath}\%d{yyyyMMdd}\warn.log</fileNamePattern>
<!-- 文件最大保存历史天数 -->
<MaxHistory>30</MaxHistory>
</rollingPolicy>
<encoder>
<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger - %msg%n</pattern>
<charset class="java.nio.charset.Charset">UTF-8</charset>
</encoder>
</appender>
<!-- ERROR日志文件 -->
<appender name="errorAppender" class="ch.qos.logback.core.rolling.RollingFileAppender">
<filter class="ch.qos.logback.classic.filter.LevelFilter">
<level>ERROR</level>
<onMatch>ACCEPT</onMatch>
<onMismatch>DENY</onMismatch>
</filter>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<!-- 文件名称 -->
<fileNamePattern>${logPath}\%d{yyyyMMdd}\error.log</fileNamePattern>
<!-- 文件最大保存历史天数 -->
<MaxHistory>30</MaxHistory>
</rollingPolicy>
<encoder>
<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger - %msg%n</pattern>
<charset class="java.nio.charset.Charset">UTF-8</charset>
</encoder>
</appender>
<!-- 往kafka推送日志 -->
<appender name="kafkaAppender" class="com.elk.log.KafkaAppender">
<!-- kafka地址 -->
<bootstrapServers>192.168.3.22:9092</bootstrapServers>
<!-- 配置topic -->
<topic>demoCoreKafkaLog</topic>
<!-- encoder负责两件事,一是将一个event事件转换成一组byte数组,二是将转换后的字节数据输出到文件中 -->
<encoder>
<pattern>${HOSTNAME} %date [%thread] %level %logger{36} [%file : %line] %msg%n</pattern>
<charset>utf8</charset>
</encoder>
<!-- layout主要的功能就是:将一个event事件转化为一个String字符串 -->
<layout class="ch.qos.logback.classic.PatternLayout">
<pattern>${HOSTNAME} %date [%thread] %level %logger{36} [%file : %line] %msg%n</pattern>
</layout>
</appender>
<!-- 指定这个包的日志级别为error -->
<logger name="org.springframework" additivity="false">
<level value="ERROR" />
<!-- 控制台输出 -->
<!-- <appender-ref ref="STDOUT" />-->
<appender-ref ref="errorAppender" />
</logger>
<!-- 由于启动的时候,以下两个包下打印debug级别日志很多 ,所以调到ERROR-->
<!-- 指定这个包的日志级别为error -->
<logger name="org.apache.tomcat.util" additivity="false">
<level value="ERROR"/>
<!-- 控制台输出 -->
<!-- <appender-ref ref="STDOUT"/>-->
<appender-ref ref="errorAppender"/>
</logger>
<!-- 默认spring boot导入hibernate很多的依赖包,启动的时候,会有hibernate相关的内容,直接去除 -->
<!-- 指定这个包的日志级别为error -->
<logger name="org.hibernate.validator" additivity="false">
<level value="ERROR"/>
<!-- 控制台输出 -->
<!-- <appender-ref ref="STDOUT"/>-->
<appender-ref ref="errorAppender"/>
</logger>
<!-- 监控所有包,日志输入到以下位置,并设置日志级别 -->
<root level="WARN"><!--INFO-->
<!-- 控制台输出 -->
<appender-ref ref="STDOUT"/>
<!-- 这里因为已经通过kafka往es中导入日志,所以就没必要再往日志文件中写入日志,可以注释掉下面四个,提高性能 -->
<appender-ref ref="infoAppender"/>
<appender-ref ref="debugAppender"/>
<appender-ref ref="warnAppender"/>
<appender-ref ref="errorAppender"/>
<appender-ref ref="kafkaAppender"/>
</root>
</configuration>
5、配置文件无需任何修改
server:
tomcat:
uri-encoding: UTF-8
max-threads: 1000
min-spare-threads: 30
port: 8087
connection-timeout: 5000ms
servlet:
context-path: /
6、编写测试类
package com.elk.log;
import lombok.extern.slf4j.Slf4j;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@Slf4j
@RestController
@RequestMapping("/test")
public class TestController {
@GetMapping("/testLog")
public String testLog() {
log.warn("gotest");
return "ok";
}
@GetMapping("/testLog1")
public Integer testLog1() {
int i = 1/0;
return i;
}
}
六、利用kibana查看日志
注意:这里的索引名字就是logstash.conf中创建的索引名,出现这个也意味着整个流程成功
此时索引模式创建完毕,我创建的索引模式名字是demo*
这时就可以看到日志了,可以进一步调用测试接口去验证,我这里不在展示,至此全部完毕
更多推荐
所有评论(0)