转自:http://www.inter12.org/archives/834

一 PRODUCER的API

1.Producer的创建,依赖于ProducerConfig
public Producer(ProducerConfig config);

2.单个或是批量的消息发送
public void send(KeyedMessage<K,V> message);
public void send(List<KeyedMessage<K,V>> messages);

3.关闭Producer到所有broker的连接
public void close();

二 CONSUMER的高层API

主要是Consumer和ConsumerConnector,这里的Consumer是ConsumerConnector的静态工厂类
class Consumer {
public static kafka.javaapi.consumer.ConsumerConnector createJavaConsumerConnector(config: ConsumerConfig);
}

具体的消息的消费都是在ConsumerConnector中
创建一个消息处理的流,包含所有的topic,并根据指定的Decoder
public <K,V> Map<String, List<KafkaStream<K,V>>>
createMessageStreams(Map<String, Integer> topicCountMap, Decoder<K> keyDecoder, Decoder<V> valueDecoder);

创建一个消息处理的流,包含所有的topic,使用默认的Decoder
public Map<String, List<KafkaStream<byte[], byte[]>>> createMessageStreams(Map<String, Integer> topicCountMap);

获取指定消息的topic,并根据指定的Decoder
public <K,V> List<KafkaStream<K,V>>
createMessageStreamsByFilter(TopicFilter topicFilter, int numStreams, Decoder<K> keyDecoder, Decoder<V> valueDecoder);

获取指定消息的topic,使用默认的Decoder
public List<KafkaStream<byte[], byte[]>> createMessageStreamsByFilter(TopicFilter topicFilter);

提交偏移量到这个消费者连接的topic
public void commitOffsets();

关闭消费者
public void shutdown();

高层的API中比较常用的就是public List<KafkaStream<byte[], byte[]>> createMessageStreamsByFilter(TopicFilter topicFilter);和public void commitOffsets();

三 CONSUMER的简单API–SIMPLECONSUMER

批量获取消息
public FetchResponse fetch(request: kafka.javaapi.FetchRequest);

获取topic的元信息
public kafka.javaapi.TopicMetadataResponse send(request: kafka.javaapi.TopicMetadataRequest);

获取目前可用的偏移量
public kafka.javaapi.OffsetResponse getOffsetsBefore(request: OffsetRequest);

关闭连接
public void close();

对于大部分应用来说,高层API就已经足够使用了,但是若是想做更进一步的控制的话,可以使用简单的API,例如消费者重启的情况下,希望得到最新的offset,就该使用SimpleConsumer.

四 KAFKA HADOOP CONSUMER API

提供了一个可水平伸缩的解决方案来结合hadoop的使用参见

https://github.com/linkedin/camus/tree/camus-kafka-0.8/

五 实战

maven依赖:

<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.10</artifactId>
<version>0.8.0</version>
</dependency>

生产者代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
 
import java.util.Properties;
 
/**
  * <pre>
  * Created by zhaoming on 14-5-4 下午3:23
  * </pre>
  */
public class KafkaProductor {
 
public static void main(String[] args) throws InterruptedException {
 
Properties properties = new Properties();
  properties.put( "zk.connect" , "127.0.0.1:2181" );
  properties.put( "metadata.broker.list" , "localhost:9092" );
 
properties.put( "serializer.class" , "kafka.serializer.StringEncoder" );
 
ProducerConfig producerConfig = new ProducerConfig(properties);
  Producer<String, String> producer = new Producer<String, String>(producerConfig);
 
// 构建消息体
  KeyedMessage<String, String> keyedMessage = new KeyedMessage<String, String>( "test-topic" , "test-message" );
  producer.send(keyedMessage);
 
Thread.sleep( 1000 );
 
producer.close();
  }
 
}

消费端代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import java.io.UnsupportedEncodingException;
import java.util.List;
import java.util.Properties;
import java.util.concurrent.TimeUnit;
 
import kafka.consumer.*;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.message.MessageAndMetadata;
 
import org.apache.commons.collections.CollectionUtils;
 
/**
  * <pre>
  * Created by zhaoming on 14-5-4 下午3:32
  * </pre>
  */
public class kafkaConsumer {
 
public static void main(String[] args) throws InterruptedException, UnsupportedEncodingException {
 
Properties properties = new Properties();
  properties.put( "zookeeper.connect" , "127.0.0.1:2181" );
  properties.put( "auto.commit.enable" , "true" );
  properties.put( "auto.commit.interval.ms" , "60000" );
  properties.put( "group.id" , "test-group" );
 
ConsumerConfig consumerConfig = new ConsumerConfig(properties);
 
ConsumerConnector javaConsumerConnector = Consumer.createJavaConsumerConnector(consumerConfig);
 
  //topic的过滤器
  Whitelist whitelist = new Whitelist( "test-topic" );
  List<KafkaStream< byte [], byte []>> partitions = javaConsumerConnector.createMessageStreamsByFilter(whitelist);
 
if (CollectionUtils.isEmpty(partitions)) {
  System.out.println( "empty!" );
  TimeUnit.SECONDS.sleep( 1 );
  }
 
//消费消息
  for (KafkaStream< byte [], byte []> partition : partitions) {
 
ConsumerIterator< byte [], byte []> iterator = partition.iterator();
  while (iterator.hasNext()) {
  MessageAndMetadata< byte [], byte []> next = iterator.next();
  System.out.println( "partiton:" + next.partition());
  System.out.println( "offset:" + next.offset());
  System.out.println( "message:" + new String(next.message(), "utf-8" ));
  }
 
}
 
}
}

Logo

Kafka开源项目指南提供详尽教程,助开发者掌握其架构、配置和使用,实现高效数据流管理和实时处理。它高性能、可扩展,适合日志收集和实时数据处理,通过持久化保障数据安全,是企业大数据生态系统的核心。

更多推荐