分布式消息队列kafka系列介绍 — 核心API介绍及实例
转自:http://www.inter12.org/archives/834
转自:http://www.inter12.org/archives/834
一 PRODUCER的API
1.Producer的创建,依赖于ProducerConfig
public Producer(ProducerConfig config);
2.单个或是批量的消息发送
public void send(KeyedMessage<K,V> message);
public void send(List<KeyedMessage<K,V>> messages);
3.关闭Producer到所有broker的连接
public void close();
二 CONSUMER的高层API
主要是Consumer和ConsumerConnector,这里的Consumer是ConsumerConnector的静态工厂类
class Consumer {
public static kafka.javaapi.consumer.ConsumerConnector createJavaConsumerConnector(config: ConsumerConfig);
}
具体的消息的消费都是在ConsumerConnector中
创建一个消息处理的流,包含所有的topic,并根据指定的Decoder
public <K,V> Map<String, List<KafkaStream<K,V>>>
createMessageStreams(Map<String, Integer> topicCountMap, Decoder<K> keyDecoder, Decoder<V> valueDecoder);
创建一个消息处理的流,包含所有的topic,使用默认的Decoder
public Map<String, List<KafkaStream<byte[], byte[]>>> createMessageStreams(Map<String, Integer> topicCountMap);
获取指定消息的topic,并根据指定的Decoder
public <K,V> List<KafkaStream<K,V>>
createMessageStreamsByFilter(TopicFilter topicFilter, int numStreams, Decoder<K> keyDecoder, Decoder<V> valueDecoder);
获取指定消息的topic,使用默认的Decoder
public List<KafkaStream<byte[], byte[]>> createMessageStreamsByFilter(TopicFilter topicFilter);
提交偏移量到这个消费者连接的topic
public void commitOffsets();
关闭消费者
public void shutdown();
高层的API中比较常用的就是public List<KafkaStream<byte[], byte[]>> createMessageStreamsByFilter(TopicFilter topicFilter);和public void commitOffsets();
三 CONSUMER的简单API–SIMPLECONSUMER
批量获取消息
public FetchResponse fetch(request: kafka.javaapi.FetchRequest);
获取topic的元信息
public kafka.javaapi.TopicMetadataResponse send(request: kafka.javaapi.TopicMetadataRequest);
获取目前可用的偏移量
public kafka.javaapi.OffsetResponse getOffsetsBefore(request: OffsetRequest);
关闭连接
public void close();
对于大部分应用来说,高层API就已经足够使用了,但是若是想做更进一步的控制的话,可以使用简单的API,例如消费者重启的情况下,希望得到最新的offset,就该使用SimpleConsumer.
四 KAFKA HADOOP CONSUMER API
提供了一个可水平伸缩的解决方案来结合hadoop的使用参见
https://github.com/linkedin/camus/tree/camus-kafka-0.8/
五 实战
maven依赖:
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.10</artifactId>
<version>0.8.0</version>
</dependency>
生产者代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
import java.util.Properties;
/**
* <pre>
* Created by zhaoming on 14-5-4 下午3:23
* </pre>
*/
public class KafkaProductor {
public static void main(String[] args) throws InterruptedException {
Properties properties = new Properties();
properties.put( "zk.connect" , "127.0.0.1:2181" );
properties.put( "metadata.broker.list" , "localhost:9092" );
properties.put( "serializer.class" , "kafka.serializer.StringEncoder" );
ProducerConfig producerConfig = new ProducerConfig(properties);
Producer<String, String> producer = new Producer<String, String>(producerConfig);
// 构建消息体
KeyedMessage<String, String> keyedMessage = new KeyedMessage<String, String>( "test-topic" , "test-message" );
producer.send(keyedMessage);
Thread.sleep( 1000 );
producer.close();
}
}
|
消费端代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
import java.io.UnsupportedEncodingException;
import java.util.List;
import java.util.Properties;
import java.util.concurrent.TimeUnit;
import kafka.consumer.*;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.message.MessageAndMetadata;
import org.apache.commons.collections.CollectionUtils;
/**
* <pre>
* Created by zhaoming on 14-5-4 下午3:32
* </pre>
*/
public class kafkaConsumer {
public static void main(String[] args) throws InterruptedException, UnsupportedEncodingException {
Properties properties = new Properties();
properties.put( "zookeeper.connect" , "127.0.0.1:2181" );
properties.put( "auto.commit.enable" , "true" );
properties.put( "auto.commit.interval.ms" , "60000" );
properties.put( "group.id" , "test-group" );
ConsumerConfig consumerConfig = new ConsumerConfig(properties);
ConsumerConnector javaConsumerConnector = Consumer.createJavaConsumerConnector(consumerConfig);
//topic的过滤器
Whitelist whitelist = new Whitelist( "test-topic" );
List<KafkaStream< byte [], byte []>> partitions = javaConsumerConnector.createMessageStreamsByFilter(whitelist);
if (CollectionUtils.isEmpty(partitions)) {
System.out.println( "empty!" );
TimeUnit.SECONDS.sleep( 1 );
}
//消费消息
for (KafkaStream< byte [], byte []> partition : partitions) {
ConsumerIterator< byte [], byte []> iterator = partition.iterator();
while (iterator.hasNext()) {
MessageAndMetadata< byte [], byte []> next = iterator.next();
System.out.println( "partiton:" + next.partition());
System.out.println( "offset:" + next.offset());
System.out.println( "message:" + new String(next.message(), "utf-8" ));
}
}
}
}
|
更多推荐
所有评论(0)