全局有序?

业务: 1 2 3 5
消费: 1 5 2 3

1.一个topic 一个分区 3个 虽然保证全局有序,但是性能下降 生产(很多公司也在使用,或则没有吧太在意)
2.单分区有序,那么我们想方法把同一个特征数据写到一个分区

p0 p1 p2

id money
业务系统:
insert into t values(1,1)
update t set age= 200 where id =1
update t set age= 400 where id =1
update t set age= 1000000 where id =1
delete from t where id =1
最终的结果的是0条
如何把特征的数据写一个分区里面
producer send api (key,value)
key: erp.t.1 null
value:SQL数据
业务系统: 特征值
insert into t values(1,1) erp.t.1 hash 5 %3=1…2 -->p2
update t set age= 200 where id =1 erp.t.1
update t set age= 400 where id =1 erp.t.1
update t set age= 1000000 where id =1 erp.t.1
delete from t where id =1 erp.t.1
源码读取https://github.com/apache/kafka/blob/3cdc78e6bb1f83973a14ce1550fe3874f7348b05/clients/src/main/java/org/apache/kafka/clients/producer/internals/DefaultPartitioner.java
这5条记录都发送到一个分区 有序的发送 ,那么消费时也不会出现紊乱

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.clients.producer.internals;

import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.atomic.AtomicInteger;

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.utils.Utils;

/**
 * The default partitioning strategy:
 * <ul>
 * <li>If a partition is specified in the record, use it
 * <li>If no partition is specified but a key is present choose a partition based on a hash of the key
 * <li>If no partition or key is present choose a partition in a round-robin fashion
 */
public class DefaultPartitioner implements Partitioner {

    private final ConcurrentMap<String, AtomicInteger> topicCounterMap = new ConcurrentHashMap<>();

    public void configure(Map<String, ?> configs) {}

    /**
     * Compute the partition for the given record.
     *
     * @param topic The topic name
     * @param key The key to partition on (or null if no key)
     * @param keyBytes serialized key to partition on (or null if no key)
     * @param value The value to partition on or null
     * @param valueBytes serialized value to partition on or null
     * @param cluster The current cluster metadata
     */
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
        int numPartitions = partitions.size();
        if (keyBytes == null) {
            int nextValue = nextValue(topic);
            List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
            if (availablePartitions.size() > 0) {
                int part = Utils.toPositive(nextValue) % availablePartitions.size();
                return availablePartitions.get(part).partition();
            } else {
                // no partitions are available, give a non-available partition
                return Utils.toPositive(nextValue) % numPartitions;
            }
        } else {
            // hash the keyBytes to choose a partition
            return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
        }
    }

    private int nextValue(String topic) {
        AtomicInteger counter = topicCounterMap.get(topic);
        if (null == counter) {
            counter = new AtomicInteger(ThreadLocalRandom.current().nextInt());
            AtomicInteger currentCounter = topicCounterMap.putIfAbsent(topic, counter);
            if (currentCounter != null) {
                counter = currentCounter;
            }
        }
        return counter.getAndIncrement();
    }

    public void close() {}

}

重点:

只要把同一个表的同一个主键的数据发到同一个分区即可(如果多数据库得加入数据库名)

分区定义如下:

private int partitionDefine(String keyToPartition) {
	if (keyToPartition == null) {
		return new Random().nextInt(numPartitions);
	} else {
		return Math.abs(keyToPartition.hashCode()) % numPartitions;
	}
}

传入的参数 tableName+主键
这样,消费到的数据就是有序的。不同的场景灵活运用即可。

Logo

Kafka开源项目指南提供详尽教程,助开发者掌握其架构、配置和使用,实现高效数据流管理和实时处理。它高性能、可扩展,适合日志收集和实时数据处理,通过持久化保障数据安全,是企业大数据生态系统的核心。

更多推荐