kafka确保数据不丢失
一、关于acks、retries、replication.factor、min.insync.replicasProducer在发布消息到某个Partition时,先通过ZooKeeper找到该Partition的Leader,然后无论该Topic的Replication Factor为多少(也即该Partition有多少个Replica),Producer只将该消息发送到该Partiti...
一、关于acks、retries、replication.factor、min.insync.replicas
Producer在发布消息到某个Partition时,先通过ZooKeeper找到该Partition的Leader,然后无论该Topic的Replication Factor为多少(也即该Partition有多少个Replica),Producer只将该消息发送到该Partition的Leader。Leader会将该消息写入其本地Log。每个Follower都从Leader中pull数据。
针对上述情况,得出如下分析
(1)生产者丢数据
在kafka生产中,基本都有一个leader和多个follwer。follwer会去同步leader的信息。因此,为了避免生产者丢数据,做如下两点配置:
-
第一个配置要在producer端设置acks=all。这个配置保证了,follwer同步完成后,才认为消息发送成功。
-
在producer端设置retries=MAX,一旦写入失败,这无限重试
(2)消息队列丢数据
针对消息队列丢数据的情况,无外乎就是,数据还没同步,leader就挂了,这时zookpeer会将其他的follwer切换为leader,那数据就丢失了。针对这种情况,应该做两个配置:
-
replication.factor参数,这个值必须大于1,即要求每个partition必须有至少2个副本
-
min.insync.replicas参数,这个值必须大于1,这个是要求一个leader至少感知到有一个follower还跟自己保持联系
这两个配置加上上面生产者的配置联合起来用,基本可确保kafka不丢数据;
官方文档:https://kafka.apache.org/documentation/ 可以查到一下建议:
A typical scenario would be to create a topic with a replication factor of 3, set min.insync.replicas to 2,and produce with acks of "all". This will ensure that the producer raises an exception if a majority of replicas do not receive a write.
一个典型的配置是:一个topic配置副本因数为3,min.insync.replicas=2,acks=all,这样可以让生产者在多数副本没有接收到写应答的时候抛出一个异常。
数据复制及ISR队列
leader会维护一个与其基本保持同步的replica列表,这个列表被称为isr(in-sync-replica)
如果一个follower比leader落后太多,或者超过一定时间未发起数据复制请求,则leader将其从ISR移除
当Isr中所有replica都向leader发送ACK时,leader就commit同步的数据,之后consumer才能够消费这部分commit的数据
COMMIT策略
server配置:
replica.lag.time.max.ms = 10000
replica.lag.max.messages = 4000
topic配置:
min.insync.replicas = 6 (isr队列的备份数)
producer配置:
request.required.acks = ALL (0就是不需要任何ack,相当于异步发送,只管发不管ack; 设成all或者-1,要求所有的fowller给leader回复,然后leader给producer确认,是最保险的,但是牺牲吞吐量)
1. 可以看到SR={A,B,C},Leader(A)节点中存在m1,m2,m3三条消息,F(B)存在m1,m2两条消息,f(c)只存在m1一消息,所以这里只会提交m1这条消息,因为m2这条消息还没有在ISR中完成复制。它只会提交三个ISR中都存在的消息。
2. 当L(A)在将消息m2复制到B,C之后挂掉,此时ISR中只有{B,C},B被选举成为新的主节点,当m2,m1都存在于B,C节点中时,B将会提交m1,m2两条消息,不会提交m3消息。
3. 此时消息将都会发送到B节点上,C节点同步了B节点中的新发的消息m4,m5之后,将会提交m4,m5.
5.此时A节点连接集群成功或重启,可以使用了,它会从B节点中同步从m1,到m5的消息,直到它的消息与B和C中的一致为止,此时的Replica将会变成ISR={A,B,C},完成了Replica的恢复。这里我们发现m3并没有存在了,这里并不是丢失了,只是当没有主节点提交m3这条消息时,它将会自动反馈到Producer,Producer会重试,或做其他处理,当重试成功后可能m3消息将会append到m5的后面,所以consumer消费消息时,我们保证的顺序性不是producer发送消息的顺序,而是commit时的顺序
(3)消费者丢数据
这种情况一般是自动提交了offset,然后你处理程序过程中挂了。kafka以为你处理好了。再强调一次offset是干嘛的
offset:指的是kafka的topic中的每个消费组消费的下标。简单的来说就是一条消息对应一个offset下标,每次消费数据的时候如果提交offset,那么下次消费就会从提交的offset加一那里开始消费。
比如一个topic中有100条数据,我消费了50条并且提交了,那么此时的kafka服务端记录提交的offset就是49(offset从0开始),那么下次消费的时候offset就从50开始消费。
解决方案也很简单,改成手动提交即可。
二、Kafka无消息丢失配置
Kafka到底会不会丢数据(data loss)? 通常不会,但有些情况下的确有可能会发生。下面的参数配置及Best practice列表可以较好地保证数据的持久性(当然是trade-off,牺牲了吞吐量)。笔者会在该列表之后对列表中的每一项进行讨论,有兴趣的同学可以看下后面的分析。
-
block.on.buffer.full = true
-
acks = all
-
retries = MAX_VALUE
-
max.in.flight.requests.per.connection = 1
-
使用KafkaProducer.send(record, callback)
-
callback逻辑中显式关闭producer:close(0)
-
unclean.leader.election.enable=false
-
replication.factor = 3
-
min.insync.replicas = 2
-
replication.factor > min.insync.replicas
-
消息处理完成之后再提交位移
给出列表之后,我们从两个方面来探讨一下数据为什么会丢失:
1、producer端:
-- Accumulator(batch丢失)-- 目前比较新版本的Kafka正式替换了Scala版本的old producer,使用了由Java重写的producer。新版本的producer采用异步发送机制。KafkaProducer.send(ProducerRecord)方法仅仅是把这条消息放入一个缓存中(即RecordAccumulator,本质上使用了队列来缓存记录),同时后台的IO线程会不断扫描该缓存区,将满足条件的消息封装到某个batch中然后发送出去。显然,这个过程中就有一个数据丢失的窗口:若IO线程发送之前producer的client端挂掉了,累积在accumulator中的数据的确有可能会丢失。
-- Producer的另一个问题是消息的乱序问题 --。假设客户端代码依次执行下面的语句将两条消息发到相同的分区producer.send(record1); producer.send(record2); 如果此时由于某些原因(比如瞬时的网络抖动)导致record1没有成功发送,同时Kafka又配置了重试机制和max.in.flight.requests.per.connection大于1(默认值是5,本来就是大于1的),那么重试record1成功后,record1在分区中就在record2之后,从而造成消息的乱序。很多某些要求强顺序保证的场景是不允许出现这种情况的。
鉴于producer的这两个问题,我们应该如何规避呢??对于消息丢失的问题,很容易想到的一个方案就是:既然异步发送有可能丢失数据, 我改成同步发送总可以吧?比如这样:
producer.send(record).get();这样当然是可以的,但是性能会很差,不建议这样使用。
因此特意总结了一份配置列表。个人认为该配置清单应该能够比较好地规避producer端数据丢失情况的发生:(特此说明一下,软件配置的很多决策都是trade-off(权衡),下面的配置也不例外:应用了这些配置,你可能会发现你的producer/consumer 吞吐量会下降,这是正常的,因为你换取了更高的数据安全性)
-
block.on.buffer.full = true 尽管该参数在0.9.0.0已经被标记为“deprecated”(反对),但鉴于它的含义非常直观,所以这里还是显式设置它为true,使得producer将一直等待缓冲区直至其变为可用。否则如果producer生产速度过快耗尽了缓冲区,producer将抛出异常
-
acks=all 很好理解,所有follower都响应了才认为消息提交成功,即"committed"
-
retries = MAX 无限重试,直到你意识到出现了问题:)
-
max.in.flight.requests.per.connection = 1 限制客户端在单个连接上能够发送的未响应请求的个数。设置此值是1表示kafka broker在响应请求之前client不能再向同一个broker发送请求。注意:设置此参数是为了避免消息乱序
-
使用KafkaProducer.send(record, callback)而不是send(record)方法 自定义回调逻辑处理消息发送失败
-
callback逻辑中最好显式关闭producer:close(0) 注意:设置此参数是为了避免消息乱序
-
unclean.leader.election.enable=false 关闭unclean leader选举,即不允许非ISR(in-sync Replica,同步复制因子列表)中的副本被选举为leader,以避免数据丢失
-
replication.factor >= 3 这个是kafka官网建议,参考了Hadoop及业界通用的三备份原则
-
min.insync.replicas > 1 消息至少要被写入到这么多副本才算成功,也是提升数据持久性的一个参数。与acks(设置为all的前提下生效)配合使用
-
保证replication.factor > min.insync.replicas 如果两者相等,当一个副本挂掉了分区也就没法正常工作了。通常设置replication.factor = min.insync.replicas + 1即可
2、consumer端:
consumer端丢失消息的情形比较简单:如果在消息处理完成前就提交了offset,那么就有可能造成数据的丢失。由于Kafka consumer默认是自动提交位移的,所以在后台提交位移前一定要保证消息被正常处理了,因此不建议采用很重的处理逻辑,如果处理耗时很长,则建议把逻辑放到另一个线程中去做。为了避免数据丢失,现给出两点建议:
-
enable.auto.commit=false 关闭自动提交位移
-
在消息被完整处理之后再手动提交位移
三、关于maybeExpire函数:
此问题我们实际开发中出现过(具体可以看https://wiki.xesv5.com/pages/viewpage.action?pageId=12953052),最终落到的问题在于异常org.apache.kafka.common.errors.TimeoutException上面,解决方法除了文中提到的增加request.timeout.ms从10s增大到30s外,我觉得这一步很重要:在produce要设置回调函数callback,回调函数返回时检查两个参数(RecordMetadata和Exception),通过Exception我们可以知道抛出的错误是什么,通过RecordMetadata我们可以知道topic、partiton、offset的相关信息,这些信息可以帮助我们在逻辑层进行重试(kafka自动重试外的)或者对错误进行告警;
1、kafka中producer/Callback.java定义了Callback的onComplete:
2、kafka中producer/RecordMetadata.java定义了RecordMetadata:
3、kafka中发生丢弃消息的maybeExpire函数(注意其中的三个丢弃判断):
(1).producer.properties:生产端的配置文件
#指定kafka节点列表,用于获取metadata,不必全部指定
#需要kafka的服务器地址,来获取每一个topic的分片数等元数据信息。
metadata.broker.list=kafka01:9092,kafka02:9092,kafka03:9092
#生产者生产的消息被发送到哪个block,需要一个分组策略。
#指定分区处理类。默认kafka.producer.DefaultPartitioner,表通过key哈希到对应分区
#partitioner.class=kafka.producer.DefaultPartitioner
#生产者生产的消息可以通过一定的压缩策略(或者说压缩算法)来压缩。消息被压缩后发送到broker集群,
#而broker集群是不会进行解压缩的,broker集群只会把消息发送到消费者集群,然后由消费者来解压缩。
#是否压缩,默认0表示不压缩,1表示用gzip压缩,2表示用snappy压缩。
#压缩后消息中会有头来指明消息压缩类型,故在消费者端消息解压是透明的无需指定。
#文本数据会以1比10或者更高的压缩比进行压缩。
compression.codec=none
#指定序列化处理类,消息在网络上传输就需要序列化,它有String、数组等许多种实现。
serializer.class=kafka.serializer.DefaultEncoder
#如果要压缩消息,这里指定哪些topic要压缩消息,默认empty,表示不压缩。
#如果上面启用了压缩,那么这里就需要设置
#compressed.topics=
#这是消息的确认机制,默认值是0。在面试中常被问到。
#producer有个ack参数,有三个值,分别代表:
#(1)不在乎是否写入成功;
#(2)写入leader成功;
#(3)写入leader和所有副本都成功;
#要求非常可靠的话可以牺牲性能设置成最后一种。
#为了保证消息不丢失,至少要设置为1,也就
#是说至少保证leader将消息保存成功。
#设置发送数据是否需要服务端的反馈,有三个值0,1,-1,分别代表3种状态:
#0: producer不会等待broker发送ack。生产者只要把消息发送给broker之后,就认为发送成功了,这是第1种情况;
#1: 当leader接收到消息之后发送ack。生产者把消息发送到broker之后,并且消息被写入到本地文件,才认为发送成功,这是第二种情况;#-1: 当所有的follower都同步消息成功后发送ack。不仅是主的分区将消息保存成功了,
#而且其所有的分区的副本数也都同步好了,才会被认为发动成功,这是第3种情况。
request.required.acks=0
#broker必须在该时间范围之内给出反馈,否则失败。
#在向producer发送ack之前,broker允许等待的最大时间 ,如果超时,
#broker将会向producer发送一个error ACK.意味着上一次消息因为某种原因
#未能成功(比如follower未能同步成功)
request.timeout.ms=10000
#生产者将消息发送到broker,有两种方式,一种是同步,表示生产者发送一条,broker就接收一条;
#还有一种是异步,表示生产者积累到一批的消息,装到一个池子里面缓存起来,再发送给broker,
#这个池子不会无限缓存消息,在下面,它分别有一个时间限制(时间阈值)和一个数量限制(数量阈值)的参数供我们来设置。
#一般我们会选择异步。
#同步还是异步发送消息,默认“sync”表同步,"async"表异步。异步可以提高发送吞吐量,
#也意味着消息将会在本地buffer中,并适时批量发送,但是也可能导致丢失未发送过去的消息
producer.type=sync
#在async模式下,当message被缓存的时间超过此值后,将会批量发送给broker,
#默认为5000ms
#此值和batch.num.messages协同工作.
queue.buffering.max.ms = 5000
#异步情况下,缓存中允许存放消息数量的大小。
#在async模式下,producer端允许buffer的最大消息量
#无论如何,producer都无法尽快的将消息发送给broker,从而导致消息在producer端大量沉积
#此时,如果消息的条数达到阀值,将会导致producer端阻塞或者消息被抛弃,默认为10000条消息。
queue.buffering.max.messages=20000
#如果是异步,指定每次批量发送数据量,默认为200
batch.num.messages=500
#在生产端的缓冲池中,消息发送出去之后,在没有收到确认之前,该缓冲池中的消息是不能被删除的,
#但是生产者一直在生产消息,这个时候缓冲池可能会被撑爆,所以这就需要有一个处理的策略。
#有两种处理方式,一种是让生产者先别生产那么快,阻塞一下,等会再生产;另一种是将缓冲池中的消息清空。
#当消息在producer端沉积的条数达到"queue.buffering.max.meesages"后阻塞一定时间后,
#队列仍然没有enqueue(producer仍然没有发送出任何消息)
#此时producer可以继续阻塞或者将消息抛弃,此timeout值用于控制"阻塞"的时间
#-1: 不限制阻塞超时时间,让produce一直阻塞,这个时候消息就不会被抛弃
#0: 立即清空队列,消息被抛弃
queue.enqueue.timeout.ms=-1
#当producer接收到error ACK,或者没有接收到ACK时,允许消息重发的次数
#因为broker并没有完整的机制来避免消息重复,所以当网络异常时(比如ACK丢失)
#有可能导致broker接收到重复的消息,默认值为3.
message.send.max.retries=3
#producer刷新topic metada的时间间隔,producer需要知道partition leader
#的位置,以及当前topic的情况
#因此producer需要一个机制来获取最新的metadata,当producer遇到特定错误时,
#将会立即刷新
#(比如topic失效,partition丢失,leader失效等),此外也可以通过此参数来配置
#额外的刷新机制,默认值600000
topic.metadata.refresh.interval.ms=60000
(2).consumer.properties:消费端的配置文件
#消费者集群通过连接Zookeeper来找到broker。
#zookeeper连接服务器地址
zookeeper.connect=zk01:2181,zk02:2181,zk03:2181
#zookeeper的session过期时间,默认5000ms,用于检测消费者是否挂掉
zookeeper.session.timeout.ms=5000
#当消费者挂掉,其他消费者要等该指定时间才能检查到并且触发重新负载均衡
zookeeper.connection.timeout.ms=10000
#这是一个时间阈值。
#指定多久消费者更新offset到zookeeper中。
#注意offset更新时基于time而不是每次获得的消息。
#一旦在更新zookeeper发生异常并重启,将可能拿到已拿到过的消息
zookeeper.sync.time.ms=2000
#指定消费
group.id=xxxxx
#这是一个数量阈值,经测试是500条。
#当consumer消费一定量的消息之后,将会自动向zookeeper提交offset信息#注意offset信息并不是每消费一次消息就向zk提交
#一次,而是现在本地保存(内存),并定期提交,默认为true
auto.commit.enable=true
# 自动更新时间。默认60 * 1000
auto.commit.interval.ms=1000
# 当前consumer的标识,可以设定,也可以有系统生成,
#主要用来跟踪消息消费情况,便于观察
conusmer.id=xxx
# 消费者客户端编号,用于区分不同客户端,默认客户端程序自动产生
client.id=xxxx
# 最大取多少块缓存到消费者(默认10)
queued.max.message.chunks=50
# 当有新的consumer加入到group时,将会reblance,此后将会
#有partitions的消费端迁移到新 的consumer上,如果一个
#consumer获得了某个partition的消费权限,那么它将会向zk
#注册 "Partition Owner registry"节点信息,但是有可能
#此时旧的consumer尚没有释放此节点, 此值用于控制,
#注册节点的重试次数.
rebalance.max.retries=5
#每拉取一批消息的最大字节数
#获取消息的最大尺寸,broker不会像consumer输出大于
#此值的消息chunk 每次feth将得到多条消息,此值为总大小,
#提升此值,将会消耗更多的consumer端内存
fetch.min.bytes=6553600
#当消息的尺寸不足时,server阻塞的时间,如果超时,
#消息将立即发送给consumer
#数据一批一批到达,如果每一批是10条消息,如果某一批还
#不到10条,但是超时了,也会立即发送给consumer。
fetch.wait.max.ms=5000
socket.receive.buffer.bytes=655360
# 如果zookeeper没有offset值或offset值超出范围。
#那么就给个初始的offset。有smallest、largest、
#anything可选,分别表示给当前最小的offset、
#当前最大的offset、抛异常。默认largest
auto.offset.reset=smallest
# 指定序列化处理类
derializer.class=kafka.serializer.DefaultDecoder
(3).server.properties:服务端的配置文件
#broker的全局唯一编号,不能重复
broker.id=0
#用来监听链接的端口,producer或consumer将在此端口建立连接
port=9092
#处理网络请求的线程数量,也就是接收消息的线程数。
#接收线程会将接收到的消息放到内存中,然后再从内存中写入磁盘。
num.network.threads=3
#消息从内存中写入磁盘是时候使用的线程数量。
#用来处理磁盘IO的线程数量
num.io.threads=8
#发送套接字的缓冲区大小
socket.send.buffer.bytes=102400
#接受套接字的缓冲区大小
socket.receive.buffer.bytes=102400
#请求套接字的缓冲区大小
socket.request.max.bytes=104857600
#kafka运行日志存放的路径
log.dirs=/export/servers/logs/kafka
#topic在当前broker上的分片个数
num.partitions=2
#我们知道segment文件默认会被保留7天的时间,超时的话就
#会被清理,那么清理这件事情就需要有一些线程来做。这里就是
#用来设置恢复和清理data下数据的线程数量
num.recovery.threads.per.data.dir=1
#segment文件保留的最长时间,默认保留7天(168小时),
#超时将被删除,也就是说7天之前的数据将被清理掉。
log.retention.hours=168
#滚动生成新的segment文件的最大时间
log.roll.hours=168
#日志文件中每个segment的大小,默认为1G
log.segment.bytes=1073741824
#上面的参数设置了每一个segment文件的大小是1G,那么
#就需要有一个东西去定期检查segment文件有没有达到1G,
#多长时间去检查一次,就需要设置一个周期性检查文件大小
#的时间(单位是毫秒)。
log.retention.check.interval.ms=300000
#日志清理是否打开
log.cleaner.enable=true
#broker需要使用zookeeper保存meta数据
zookeeper.connect=zk01:2181,zk02:2181,zk03:2181
#zookeeper链接超时时间
zookeeper.connection.timeout.ms=6000
#上面我们说过接收线程会将接收到的消息放到内存中,然后再从内存
#写到磁盘上,那么什么时候将消息从内存中写入磁盘,就有一个
#时间限制(时间阈值)和一个数量限制(数量阈值),这里设置的是
#数量阈值,下一个参数设置的则是时间阈值。
#partion buffer中,消息的条数达到阈值,将触发flush到磁盘。
log.flush.interval.messages=10000
#消息buffer的时间,达到阈值,将触发将消息从内存flush到磁盘,
#单位是毫秒。
log.flush.interval.ms=3000
#删除topic需要server.properties中设置delete.topic.enable=true否则只是标记删除
delete.topic.enable=true
#此处的host.name为本机IP(重要),如果不改,则客户端会抛出:
#Producer connection to localhost:9092 unsuccessful 错误!
host.name=kafka01
advertised.host.name=192.168.239.128
TIPS :
1 smallest\largest那个设置只对全新的group生效,如果是消费过数据的group,重启之后从上次断开的地方(也就是自动提交的offset)继续
更多推荐
所有评论(0)