flink sql 处理自定义json解析
最近要把公司flinknginx日志入库的代码,修改成flinksql的方式执行。这样日志的入库通过sql更加方便。但是flinksql没有提供对json的解析方式,而nginx日志又是json字符串无法完全使用sql来完成日志的入库。因此,需要修改flink来完成json的自定义解析。首先定义source表CREATE TABLE kafka (json_data string,type str
·
最近要把公司flink nginx 日志入库的代码,修改成flink sql的方式执行。这样日志的入库通过sql更加方便。
但是flink sql没有提供对json的解析方式,而nginx日志又是json字符串无法完全使用sql来完成日志的入库。
因此,需要修改flink来完成json的自定义解析。
首先
定义source表
CREATE TABLE kafka (
json_data string,
type string, ts TIMESTAMP(3) METADATA FROM 'timestamp'
) WITH (
'connector' = 'kafka',
'topic' = 'nginxlog',
'properties.bootstrap.servers' = '127.0.0.1:9092',
'properties.group.id' = 'flink-kafka',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json'
)
定义sink表
CREATE TABLE hdfs (
request_url STRING,
resp_code INT,
...
) WITH (
'connector' = 'filesystem',
'path' = 'file:///path/to/whatever',
'format' = 'orc',
...
)
定义一个json解析的表(涉及方法,后面有实现)
'table' = 'kafka'读取的数据表
'stream' = 'org.apache.flink.streaming.JsonStreamTableProcessFunction' json解析类
json_data$reuest_url 为
{
"json_data": {
"reuest_url": "http://www.baidu.com"
}
}
StreamTableUtil.createStreamTable(fsTableEnv, "CREATE TABLE to_json (\n" +
" json_data$reuest_url STRING,\n" +
" json_data$resp_code INT\n" +
") WITH (\n" +
" 'table' = 'kafka',\n" +
" 'stream' = 'org.apache.flink.streaming.JsonStreamTableProcessFunction'\n" +
")");
执行入库sql
insert into hdfs select * from to_json
下面是createStreamTable的实现
package org.apache.flink.streaming;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.ApiExpression;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableEnvironmentInternal;
import org.apache.flink.table.catalog.CatalogTable;
import org.apache.flink.table.data.RowData;
import org.apache.flink.table.delegation.Parser;
import org.apache.flink.table.operations.Operation;
import org.apache.flink.table.operations.ddl.CreateTableOperation;
import org.apache.flink.table.runtime.typeutils.InternalTypeInfo;
import org.apache.flink.table.types.logical.RowType;
import java.lang.reflect.Constructor;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.stream.Collectors;
import static org.apache.flink.table.api.Expressions.$;
public final class StreamTableUtil {
private StreamTableUtil() {
}
public static void createStreamTable(StreamTableEnvironment fsTableEnv, String sql) throws Exception {
TableEnvironmentInternal tableEnvironment = (TableEnvironmentInternal) fsTableEnv;
Parser parser = tableEnvironment.getParser();
List<Operation> parse = parser.parse(sql);
CreateTableOperation operation = (CreateTableOperation) parse.get(0);
String tableName = operation.getTableIdentifier().getObjectName();
CatalogTable catalogTable = operation.getCatalogTable();
//create tmp table
String tmpTable = "tmp" + UUID.randomUUID().toString().replaceAll("\\-", "");
fsTableEnv.executeSql(sql.replace(tableName, tmpTable));
Map<String, String> properties = catalogTable.getOptions();
String fromTable = properties.get("table");
Class<? extends StreamTableProcessFunction> streamClass = (Class<? extends StreamTableProcessFunction>) Class.forName(properties.get("stream"));
createStreamTable(fsTableEnv, fromTable, catalogTable, tableName, streamClass);
}
private static void createStreamTable(StreamTableEnvironment fsTableEnv, String fromTable, CatalogTable toCatalogTable, String toTable, Class<? extends StreamTableProcessFunction> streamClass) throws Exception {
Table fromCatalogTable = fsTableEnv.sqlQuery("select * from " + fromTable);
DataStream<RowData> stream = fsTableEnv.toAppendStream(fromCatalogTable, RowData.class);
RowType fromTableRowType = new RowType(fromCatalogTable.getSchema().getTableColumns().stream()
.map(e -> new RowType.RowField(e.getName(), e.getType().getLogicalType(), null))
.collect(Collectors.toList()));
RowType toTableRowType = new RowType(toCatalogTable.getSchema().getTableColumns().stream()
.map(e -> new RowType.RowField(e.getName(), e.getType().getLogicalType(), null))
.collect(Collectors.toList()));
Constructor<? extends StreamTableProcessFunction> constructor = streamClass.getDeclaredConstructor(RowType.class, RowType.class);
InternalTypeInfo<RowData> internalTypeInfo = InternalTypeInfo.of(toTableRowType);
DataStream<RowData> out = stream.process(constructor.newInstance(fromTableRowType, toTableRowType), internalTypeInfo);
List<ApiExpression> apiExpressionList = toTableRowType.getFieldNames().stream().map(e -> $(e)).collect(Collectors.toList());
fsTableEnv.createTemporaryView(toTable, out, apiExpressionList.toArray(new ApiExpression[0]));
}
}
定义stream table处理的父类
package org.apache.flink.streaming;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.table.data.RowData;
import org.apache.flink.table.types.logical.RowType;
public abstract class StreamTableProcessFunction extends ProcessFunction<RowData, RowData> {
private RowType fromTableRowType;
private RowType toTableRowType;
public RowType getFromTableRowType() {
return fromTableRowType;
}
public RowType getToTableRowType() {
return toTableRowType;
}
public StreamTableProcessFunction(RowType fromTableRowType, RowType toTableRowType) {
this.fromTableRowType = fromTableRowType;
this.toTableRowType = toTableRowType;
}
}
实现json解析的子类
package org.apache.flink.streaming;
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import com.google.gson.JsonPrimitive;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.table.data.GenericRowData;
import org.apache.flink.table.data.RowData;
import org.apache.flink.table.data.binary.BinaryStringData;
import org.apache.flink.table.types.logical.RowType;
import org.apache.flink.util.Collector;
import java.util.*;
public class JsonStreamTableProcessFunction extends StreamTableProcessFunction {
private Gson gson;
public JsonStreamTableProcessFunction(RowType fromTableRowType, RowType toTableRowType) {
super(fromTableRowType, toTableRowType);
}
@Override
public void open(Configuration parameters) throws Exception {
gson = new Gson();
}
@Override
public void processElement(RowData value, Context ctx, Collector<RowData> out) throws Exception {
Map<String, Integer> fieldIndex = new LinkedHashMap<>();
for (int i = 0; i < getFromTableRowType().getFields().size(); i++) {
RowType.RowField rowField = getFromTableRowType().getFields().get(i);
fieldIndex.put(rowField.getName(), i);
}
GenericRowData rowData = new GenericRowData(getToTableRowType().getFieldCount());
List<RowType.RowField> fields = getToTableRowType().getFields();
for (int f = 0; f < fields.size(); f++) {
RowType.RowField rowField = fields.get(f);
String[] split = rowField.getName().split("\\$");
String key = split[0];
Integer idx = fieldIndex.get(key);
//针对nginx request_body 二进制数据转义
String json = value.getString(idx).toString().replaceAll("\\\\x", "\\\\\\\\x");
JsonObject jsonObject = gson.fromJson(json, JsonObject.class);
for (int i = 1; i < split.length; i++) {
String k = split[i];
if (i < split.length - 1) {
jsonObject = jsonObject.get(k).getAsJsonObject();
} else {
if (Integer.class.isAssignableFrom(rowField.getType().getDefaultConversion())) {
try {
rowData.setField(f, jsonObject.get(k).getAsInt());
} catch (Exception e) {
}
} else if (Float.class.isAssignableFrom(rowField.getType().getDefaultConversion())) {
try {
rowData.setField(f, jsonObject.get(k).getAsFloat());
} catch (Exception e) {
}
} else if (Double.class.isAssignableFrom(rowField.getType().getDefaultConversion())) {
try {
rowData.setField(f, jsonObject.get(k).getAsDouble());
} catch (Exception e) {
}
} else {
String ret = jsonObject.get(k).toString();
rowData.setField(f, new BinaryStringData(ret));
}
}
}
}
out.collect(rowData);
}
}
更多推荐
已为社区贡献1条内容
所有评论(0)