场景

餐厅老板想要统计每个用户来他的店里总共消费了多少金额,我们可以使用updateStateByKey来实现

从kafka接收用户消费json数据,统计每分钟用户的消费情况,并且统计所有时间所有用户的消费情况(使用updateStateByKey来实现)

数据格式

{"user":"zhangsan","payment":8}
{"user":"wangwu","payment":7}
....

往kafka写入消息(kafka producer)

package producer

import java.util.Properties

import kafka.javaapi.producer.Producer
import kafka.producer.{KeyedMessage, ProducerConfig}
import org.codehaus.jettison.json.JSONObject
import scala.util.Random

object KafkaProducer extends App{

  //所有用户
  private val users = Array(
    "zhangsan", "lisi",
    "wangwu", "zhaoliu")

  private val random = new Random()

  //消费的金额(0-9)
  def payMount() : Double = {
    random.nextInt(10)
  }

  //随机获得用户名称
  def getUserName() : String = {
    users(random.nextInt(users.length))
  }

  //kafka参数
  val topic = "user_payment"
  val brokers = "192.168.6.55:9092,192.168.6.56:9092"
  val props = new Properties()
  props.put("metadata.broker.list", brokers)
  props.put("serializer.class", "kafka.serializer.StringEncoder")

  val kafkaConfig = new ProducerConfig(props)
  val producer = new Producer[String, String](kafkaConfig)

  while(true) {
    // 创建json串
    val event = new JSONObject()
    event
      .put("user", getUserName())
      .put("payment", payMount)

    // 往kafka发送数据
    producer.send(new KeyedMessage[String, String](topic, event.toString))
    println("Message sent: " + event)

    //每隔200ms发送一条数据
    Thread.sleep(200)
  }
}

使用spark Streaming处理数据

import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{StreamingContext, Seconds}
import org.apache.spark.{SparkContext, SparkConf}
import net.liftweb.json._

object UpdateStateByKeyTest {

  def main (args: Array[String]) {

    def functionToCreateContext(): StreamingContext = {
    //创建streamingContext
      val conf = new SparkConf().setAppName("test").setMaster("local[*]")
      val ssc = new StreamingContext(conf, Seconds(60))

      //将数据进行保存(这里作为演示,生产中保存在hdfs)
      ssc.checkpoint("checkPoint")

      val zkQuorum = "192.168.6.55:2181,192.168.6.56:2181,192.168.6.57:2181"
      val consumerGroupName = "user_payment"
      val kafkaTopic = "user_payment"
      val kafkaThreadNum = 1

      val topicMap = kafkaTopic.split(",").map((_, kafkaThreadNum.toInt)).toMap

    //从kafka读入数据并且将json串进行解析
      val user_payment = KafkaUtils.createStream(ssc, zkQuorum, consumerGroupName, topicMap).map(x=>{
        parse(x._2)
      })

     //对一分钟的数据进行计算
      val paymentSum = user_payment.map(jsonLine =>{
        implicit val formats = DefaultFormats
        val user = (jsonLine \ "user").extract[String]
        val payment = (jsonLine \ "payment").extract[String]
        (user,payment.toDouble)
      }).reduceByKey(_+_)

      //输出每分钟的计算结果
      paymentSum.print()

    //将以前的数据和最新一分钟的数据进行求和
      val addFunction = (currValues : Seq[Double],preVauleState : Option[Double]) => {
        val currentSum = currValues.sum
        val previousSum = preVauleState.getOrElse(0.0)
        Some(currentSum + previousSum)
      }

      val totalPayment = paymentSum.updateStateByKey[Double](addFunction)

      //输出总计的结果
      totalPayment.print()

      ssc
    }

    //如果"checkPoint"中存在以前的记录,则重启streamingContext,读取以前保存的数据,否则创建新的StreamingContext
    val context = StreamingContext.getOrCreate("checkPoint", functionToCreateContext _)

    context.start()
    context.awaitTermination()
  }
}

运行结果节选

//-----------第n分钟的结果------------------

//1分钟结果
-------------------
(zhangsan,23.0)
(lisi,37.0)
(wangwu,31.0)
(zhaoliu,34.0)
-------------------

//总和结果 
(zhangsan,101.0)
(lisi,83.0)
(wangwu,80.0)
(zhaoliu,130.0)

//-----------第n+1分钟的结果------------------

//1分钟结果
-------------------
(zhangsan,43.0)
(lisi,16.0)
(wangwu,21.0)
(zhaoliu,54.0)
-------------------
//总和结果 
-------------------
(zhangsan,144.0)
(lisi,99.0)
(wangwu,101.0)
(zhaoliu,184.0)
-------------------

后记

下一片文章为统计不同时间段用户平均消费金额,消费次数,消费总额等指标。
点击这里

Logo

Kafka开源项目指南提供详尽教程,助开发者掌握其架构、配置和使用,实现高效数据流管理和实时处理。它高性能、可扩展,适合日志收集和实时数据处理,通过持久化保障数据安全,是企业大数据生态系统的核心。

更多推荐