Flink SQL JSON Format 源码解析
用 Flink SQL 解析 JSON 格式的数据是非常简单的,只需要在 DDL 语句中设置 Format 为 json 即可,像下面这样:CREATETABLEkafka_sourc...
用 Flink SQL 解析 JSON 格式的数据是非常简单的,只需要在 DDL 语句中设置 Format 为 json 即可,像下面这样:
CREATE TABLE kafka_source (
funcName STRING,
data ROW<snapshots ARRAY<ROW<content_type STRING,url STRING>>,audio ARRAY<ROW<content_type STRING,url STRING>>>,
resultMap ROW<`result` MAP<STRING,STRING>,isSuccess BOOLEAN>,
meta MAP<STRING,STRING>,
`type` INT,
`timestamp` BIGINT,
arr ARRAY<ROW<address STRING,city STRING>>,
map MAP<STRING,INT>,
doublemap MAP<STRING,MAP<STRING,INT>>,
proctime as PROCTIME()
) WITH (
'connector' = 'kafka', -- 使用 kafka connector
'topic' = 'test', -- kafka topic
'properties.bootstrap.servers' = 'master:9092,storm1:9092,storm2:9092', -- broker连接信息
'properties.group.id' = 'jason_flink_test', -- 消费kafka的group_id
'scan.startup.mode' = 'latest-offset', -- 读取数据的位置
'format' = 'json', -- 数据源格式为 json
'json.fail-on-missing-field' = 'true', -- 字段丢失任务不失败
'json.ignore-parse-errors' = 'false' -- 解析失败跳过
)
那么你有没有想过它的底层是怎么实现的呢? 今天这篇文章就带你深入浅出,了解其实现细节.
当你输入一条 SQL 的时候在 Flink 里面会经过解析,验证,优化,转换等几个重要的步骤,因为前面的几个过程比较繁琐,这里暂时不展开说明,我们直接来到比较关键的源码处,在把 sqlNode 转换成 relNode 的过程中,会来到 CatalogSourceTable#createDynamicTableSource 该类的作用是把 Calcite 的 RelOptTable 翻译成 Flink 的 TableSourceTable 对象.
createDynamicTableSource 源码
private DynamicTableSource createDynamicTableSource(
FlinkContext context, ResolvedCatalogTable catalogTable) {
final ReadableConfig config = context.getTableConfig().getConfiguration();
return FactoryUtil.createTableSource(
schemaTable.getCatalog(),
schemaTable.getTableIdentifier(),
catalogTable,
config,
Thread.currentThread().getContextClassLoader(),
schemaTable.isTemporary());
}
其实这个就是要创建 Kafka Source 的流表,然后会调用 FactoryUtil#createTableSource 这个方法
createTableSource 源码
public static DynamicTableSource createTableSource(
@Nullable Catalog catalog,
ObjectIdentifier objectIdentifier,
ResolvedCatalogTable catalogTable,
ReadableConfig configuration,
ClassLoader classLoader,
boolean isTemporary) {
final DefaultDynamicTableContext context =
new DefaultDynamicTableContext(
objectIdentifier, catalogTable, configuration, classLoader, isTemporary);
try {
// 获取对应的 factory 这里其实就是 KafkaDynamicTableFactory
final DynamicTableSourceFactory factory =
getDynamicTableFactory(DynamicTableSourceFactory.class, catalog, context);
// 创建动态表
return factory.createDynamicTableSource(context);
} catch (Throwable t) {
throw new ValidationException(
String.format(
"Unable to create a source for reading table '%s'.\n\n"
+ "Table options are:\n\n"
+ "%s",
objectIdentifier.asSummaryString(),
catalogTable.getOptions().entrySet().stream()
.map(e -> stringifyOption(e.getKey(), e.getValue()))
.sorted()
.collect(Collectors.joining("\n"))),
t);
}
}
在这个方法里面,有两个重要的过程,首先是获取对应的 factory 对象,然后创建 DynamicTableSource 实例.在 getDynamicTableFactory 中实际调用的是 discoverFactory 方法,顾名思义就是发现工厂.
discoverFactory 源码
public static <T extends Factory> T discoverFactory(
ClassLoader classLoader, Class<T> factoryClass, String factoryIdentifier) {
final List<Factory> factories = discoverFactories(classLoader);
final List<Factory> foundFactories =
factories.stream()
.filter(f -> factoryClass.isAssignableFrom(f.getClass()))
.collect(Collectors.toList());
if (foundFactories.isEmpty()) {
throw new ValidationException(
String.format(
"Could not find any factories that implement '%s' in the classpath.",
factoryClass.getName()));
}
final List<Factory> matchingFactories =
foundFactories.stream()
.filter(f -> f.factoryIdentifier().equals(factoryIdentifier))
.collect(Collectors.toList());
if (matchingFactories.isEmpty()) {
throw new ValidationException(
String.format(
"Could not find any factory for identifier '%s' that implements '%s' in the classpath.\n\n"
+ "Available factory identifiers are:\n\n"
+ "%s",
factoryIdentifier,
factoryClass.getName(),
foundFactories.stream()
.map(Factory::factoryIdentifier)
.distinct()
.sorted()
.collect(Collectors.joining("\n"))));
}
if (matchingFactories.size() > 1) {
throw new ValidationException(
String.format(
"Multiple factories for identifier '%s' that implement '%s' found in the classpath.\n\n"
+ "Ambiguous factory classes are:\n\n"
+ "%s",
factoryIdentifier,
factoryClass.getName(),
matchingFactories.stream()
.map(f -> f.getClass().getName())
.sorted()
.collect(Collectors.joining("\n"))));
}
return (T) matchingFactories.get(0);
}
这个代码相对简单,就不加注释了,逻辑也非常的清晰,就是获取对应的 factory ,先是通过 SPI 机制加载所有的 factory 然后根据 factoryIdentifier 过滤出满足条件的,这里其实就是 kafka connector 了.最后还有一些异常的判断.
discoverFactories 源码
private static List<Factory> discoverFactories(ClassLoader classLoader) {
try {
final List<Factory> result = new LinkedList<>();
ServiceLoader.load(Factory.class, classLoader).iterator().forEachRemaining(result::add);
return result;
} catch (ServiceConfigurationError e) {
LOG.error("Could not load service provider for factories.", e);
throw new TableException("Could not load service provider for factories.", e);
}
}
这个代码大家应该比较熟悉了,前面也有文章介绍过了.加载所有的 Factory 返回一个 Factory 的集合.
下面才是今天的重点.
createDynamicTableSource 源码
public DynamicTableSource createDynamicTableSource(Context context) {
TableFactoryHelper helper = FactoryUtil.createTableFactoryHelper(this, context);
ReadableConfig tableOptions = helper.getOptions();
Optional<DecodingFormat<DeserializationSchema<RowData>>> keyDecodingFormat = getKeyDecodingFormat(helper);
// format 的逻辑
DecodingFormat<DeserializationSchema<RowData>> valueDecodingFormat = getValueDecodingFormat(helper);
helper.validateExcept(new String[]{"properties."});
KafkaOptions.validateTableSourceOptions(tableOptions);
validatePKConstraints(context.getObjectIdentifier(), context.getCatalogTable(), valueDecodingFormat);
StartupOptions startupOptions = KafkaOptions.getStartupOptions(tableOptions);
Properties properties = KafkaOptions.getKafkaProperties(context.getCatalogTable().getOptions());
properties.setProperty("flink.partition-discovery.interval-millis", String.valueOf(tableOptions.getOptional(KafkaOptions.SCAN_TOPIC_PARTITION_DISCOVERY).map(Duration::toMillis).orElse(-9223372036854775808L)));
DataType physicalDataType = context.getCatalogTable().getSchema().toPhysicalRowDataType();
int[] keyProjection = KafkaOptions.createKeyFormatProjection(tableOptions, physicalDataType);
int[] valueProjection = KafkaOptions.createValueFormatProjection(tableOptions, physicalDataType);
String keyPrefix = (String)tableOptions.getOptional(KafkaOptions.KEY_FIELDS_PREFIX).orElse((Object)null);
return this.createKafkaTableSource(physicalDataType, (DecodingFormat)keyDecodingFormat.orElse((Object)null), valueDecodingFormat, keyProjection, valueProjection, keyPrefix, KafkaOptions.getSourceTopics(tableOptions), KafkaOptions.getSourceTopicPattern(tableOptions), properties, startupOptions.startupMode, startupOptions.specificOffsets, startupOptions.startupTimestampMillis);
}
getValueDecodingFormat 方法最终会调用 discoverOptionalFormatFactory 方法
discoverOptionalDecodingFormat 和 discoverOptionalFormatFactory 源码
public <I, F extends DecodingFormatFactory<I>>
Optional<DecodingFormat<I>> discoverOptionalDecodingFormat(
Class<F> formatFactoryClass, ConfigOption<String> formatOption) {
return discoverOptionalFormatFactory(formatFactoryClass, formatOption)
.map(
formatFactory -> {
String formatPrefix = formatPrefix(formatFactory, formatOption);
try {
return formatFactory.createDecodingFormat(
context, projectOptions(formatPrefix));
} catch (Throwable t) {
throw new ValidationException(
String.format(
"Error creating scan format '%s' in option space '%s'.",
formatFactory.factoryIdentifier(),
formatPrefix),
t);
}
});
}
private <F extends Factory> Optional<F> discoverOptionalFormatFactory(
Class<F> formatFactoryClass, ConfigOption<String> formatOption) {
final String identifier = allOptions.get(formatOption);
if (identifier == null) {
return Optional.empty();
}
final F factory =
discoverFactory(context.getClassLoader(), formatFactoryClass, identifier);
String formatPrefix = formatPrefix(factory, formatOption);
// log all used options of other factories
consumedOptionKeys.addAll(
factory.requiredOptions().stream()
.map(ConfigOption::key)
.map(k -> formatPrefix + k)
.collect(Collectors.toSet()));
consumedOptionKeys.addAll(
factory.optionalOptions().stream()
.map(ConfigOption::key)
.map(k -> formatPrefix + k)
.collect(Collectors.toSet()));
return Optional.of(factory);
}
// 直接过滤出满足条件的 format
public static <T extends Factory> T discoverFactory(
ClassLoader classLoader, Class<T> factoryClass, String factoryIdentifier) {
final List<Factory> factories = discoverFactories(classLoader);
final List<Factory> foundFactories =
factories.stream()
.filter(f -> factoryClass.isAssignableFrom(f.getClass()))
.collect(Collectors.toList());
if (foundFactories.isEmpty()) {
throw new ValidationException(
String.format(
"Could not find any factories that implement '%s' in the classpath.",
factoryClass.getName()));
}
final List<Factory> matchingFactories =
foundFactories.stream()
.filter(f -> f.factoryIdentifier().equals(factoryIdentifier))
.collect(Collectors.toList());
if (matchingFactories.isEmpty()) {
throw new ValidationException(
String.format(
"Could not find any factory for identifier '%s' that implements '%s' in the classpath.\n\n"
+ "Available factory identifiers are:\n\n"
+ "%s",
factoryIdentifier,
factoryClass.getName(),
foundFactories.stream()
.map(Factory::factoryIdentifier)
.distinct()
.sorted()
.collect(Collectors.joining("\n"))));
}
if (matchingFactories.size() > 1) {
throw new ValidationException(
String.format(
"Multiple factories for identifier '%s' that implement '%s' found in the classpath.\n\n"
+ "Ambiguous factory classes are:\n\n"
+ "%s",
factoryIdentifier,
factoryClass.getName(),
matchingFactories.stream()
.map(f -> f.getClass().getName())
.sorted()
.collect(Collectors.joining("\n"))));
}
return (T) matchingFactories.get(0);
}
这里的逻辑和上面加载 connector 的逻辑是一样的,同样通过 SPI 先加载所有的 format 然后根据 factoryIdentifier 过滤出满足条件的 format 这里其实就是 json 了. 返回 formatFactory 后开始创建 format 这个时候就会走到 JsonFormatFactory#createDecodingFormat 这个方法里面.真正的创建一个 DecodingFormat 对象.
createDecodingFormat 源码
@Override
public DecodingFormat<DeserializationSchema<RowData>> createDecodingFormat(
DynamicTableFactory.Context context, ReadableConfig formatOptions) {
// 验证相关的参数
FactoryUtil.validateFactoryOptions(this, formatOptions);
// 验证 json.fail-on-missing-field 和 json.ignore-parse-errors
validateDecodingFormatOptions(formatOptions);
// 获取 json.fail-on-missing-field 和 json.ignore-parse-errors
final boolean failOnMissingField = formatOptions.get(FAIL_ON_MISSING_FIELD);
final boolean ignoreParseErrors = formatOptions.get(IGNORE_PARSE_ERRORS);
// 获取 timestamp-format.standard
TimestampFormat timestampOption = JsonOptions.getTimestampFormat(formatOptions);
return new DecodingFormat<DeserializationSchema<RowData>>() {
@Override
public DeserializationSchema<RowData> createRuntimeDecoder(
DynamicTableSource.Context context, DataType producedDataType) {
final RowType rowType = (RowType) producedDataType.getLogicalType();
final TypeInformation<RowData> rowDataTypeInfo =
context.createTypeInformation(producedDataType);
return new JsonRowDataDeserializationSchema(
rowType,
rowDataTypeInfo,
failOnMissingField,
ignoreParseErrors,
timestampOption);
}
@Override
public ChangelogMode getChangelogMode() {
return ChangelogMode.insertOnly();
}
};
}
这里的逻辑也非常简单,首先会对 format 相关的参数进行验证, 然后验证 json.fail-on-missing-field 和 json.ignore-parse-errors 这两个参数.之后就开始创建 JsonRowDataDeserializationSchema 对象
JsonRowDataDeserializationSchema 源码
public JsonRowDataDeserializationSchema(
RowType rowType,
TypeInformation<RowData> resultTypeInfo,
boolean failOnMissingField,
boolean ignoreParseErrors,
TimestampFormat timestampFormat) {
if (ignoreParseErrors && failOnMissingField) {
throw new IllegalArgumentException(
"JSON format doesn't support failOnMissingField and ignoreParseErrors are both enabled.");
}
this.resultTypeInfo = checkNotNull(resultTypeInfo);
this.failOnMissingField = failOnMissingField;
this.ignoreParseErrors = ignoreParseErrors;
this.runtimeConverter =
new JsonToRowDataConverters(failOnMissingField, ignoreParseErrors, timestampFormat)
.createConverter(checkNotNull(rowType));
this.timestampFormat = timestampFormat;
boolean hasDecimalType =
LogicalTypeChecks.hasNested(rowType, t -> t instanceof DecimalType);
if (hasDecimalType) {
objectMapper.enable(DeserializationFeature.USE_BIG_DECIMAL_FOR_FLOATS);
}
objectMapper.configure(JsonReadFeature.ALLOW_UNESCAPED_CONTROL_CHARS.mappedFeature(), true);
}
在构造方法里面最重要的是创建 JsonToRowDataConverter 对象,这里面方法的调用比较多,这里只重要的方法进行说明
createRowConverter 源码
public JsonToRowDataConverter createRowConverter(RowType rowType) {
final JsonToRowDataConverter[] fieldConverters =
rowType.getFields().stream()
.map(RowType.RowField::getType)
.map(this::createConverter)
.toArray(JsonToRowDataConverter[]::new);
final String[] fieldNames = rowType.getFieldNames().toArray(new String[0]);
return jsonNode -> {
ObjectNode node = (ObjectNode) jsonNode;
int arity = fieldNames.length;
GenericRowData row = new GenericRowData(arity);
for (int i = 0; i < arity; i++) {
String fieldName = fieldNames[i];
JsonNode field = node.get(fieldName);
Object convertedField = convertField(fieldConverters[i], fieldName, field);
row.setField(i, convertedField);
}
return row;
};
}
因为是 JSON 格式的数据,所以是一个 ROW 类型,所以要先创建 JsonToRowDataConverter 对象,然后在这里会对每一个字段创建一个 fieldConverter 根据你在 DDL 里面定义的字段类型走不同的转换方法,比如 String 类型的数据会调用 convertToString 方法
convertToString 源码
private StringData convertToString(JsonNode jsonNode) {
if (jsonNode.isContainerNode()) {
return StringData.fromString(jsonNode.toString());
} else {
return StringData.fromString(jsonNode.asText());
}
}
这里需要注意的是 string 类型的数据需要返回 StringData 类型不然会报类型转换异常的错.感兴趣的朋友可以看下其他类型是如何处理的.
到这里 JsonRowDataDeserializationSchema 对象就构造完成了.那后面其实就是优化,转换到翻译成 streamGraph 再后面的过程就和 datastream api 开发的任务一样了.
然后真正开始消费数据的时候,会走到 JsonRowDataDeserializationSchema#deserialize 方法对数据进行反序列化.
deserialize 源码
@Override
public RowData deserialize(@Nullable byte[] message) throws IOException {
if (message == null) {
return null;
}
try {
return convertToRowData(deserializeToJsonNode(message));
} catch (Throwable t) {
if (ignoreParseErrors) {
return null;
}
throw new IOException(
format("Failed to deserialize JSON '%s'.", new String(message)), t);
}
}
先会把数据反序列成 JsonNode 对象.
deserializeToJsonNode 源码
public JsonNode deserializeToJsonNode(byte[] message) throws IOException {
return objectMapper.readTree(message);
}
可以看到 Flink 的内部是用 jackson 解析数据的.接着把 jsonNode 格式的数据转换成 RowData 格式的数据
convertToRowData 源码
public RowData convertToRowData(JsonNode message) {
return (RowData) runtimeConverter.convert(message);
}
然后这里的调用其实和上面构造 JsonRowDataDeserializationSchema 的时候是一样的
return jsonNode -> {
ObjectNode node = (ObjectNode) jsonNode;
int arity = fieldNames.length;
GenericRowData row = new GenericRowData(arity);
for (int i = 0; i < arity; i++) {
String fieldName = fieldNames[i];
JsonNode field = node.get(fieldName);
Object convertedField = convertField(fieldConverters[i], fieldName, field);
row.setField(i, convertedField);
}
return row;
};
最终返回的是 GenericRowData 类型的数据,其实就是 RowData 类型的,因为是 RowData 的实现类.然后就会把反序列后的数据发送到下游了.
总结
这篇文章主要分析了 Flink SQL JSON Format 的相关源码,从构建 JsonRowDataDeserializationSchema 到反序列化数据 deserialize.因为篇幅原因,只展示每个环节最重要的代码,其实很多细节都直接跳过了.感兴趣的朋友也可以自己去调试一下代码.有时间的话会更新更多的实现细节.
推荐阅读
如果你觉得文章对你有帮助,麻烦点一下赞
和在看
吧,你的支持是我创作的最大动力.
更多推荐
所有评论(0)