kafka学习笔记(三)spring boot整合kafka0.9.0.1(使用配置类)
spring boot 版本:1.5.6引入关于kafka的相关jar <dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</
·
spring boot 版本:1.5.6
引入关于kafka的相关jar
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>1.0.0.RELEASE</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.9.0.1</version>
</dependency>
注意kafka-clients的版本要和kafka服务器的版本一致
经测试kafka0.9.0.1 在spring-kafka1.0.0的jar包下才能成功的接发消息,不然会报出一个 nosuchmechod的错误,
配置类:
先看配置文件的一些参数:
kafka.consumer.servers=192.168.230.131:9092
kafka.consumer.enable.auto.commit=true
kafka.consumer.session.timeout=6000
kafka.consumer.auto.commit.interval=100
kafka.consumer.auto.offset.reset=latest
kafka.consumer.group.id=test-consume-group
kafka.consumer.concurrency=10
kafka.producer.servers=192.168.230.131:9092
kafka.producer.retries=1
kafka.producer.batch.size=4096
kafka.producer.linger=1
kafka.producer.buffer.memory=40960
消息生产者:
import java.util.HashMap;
import java.util.Map;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
@Configuration
@EnableKafka
public class KafkaProducerConfig {
@Value("${kafka.producer.servers}")
private String servers;
@Value("${kafka.producer.retries}")
private int retries;
@Value("${kafka.producer.batch.size}")
private int batchSize;
@Value("${kafka.producer.linger}")
private int linger;
@Value("${kafka.producer.buffer.memory}")
private int bufferMemory;
@Bean
public KafkaTemplate<String, String> kafkaTemplate() {
return new KafkaTemplate(producerFactory());
}
public ProducerFactory<String, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());
}
public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
props.put(ProducerConfig.RETRIES_CONFIG, retries);
props.put(ProducerConfig.BATCH_SIZE_CONFIG, batchSize);
props.put(ProducerConfig.LINGER_MS_CONFIG, linger);
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, bufferMemory);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
return props;
}
}
发送消息方法:
@Component
public class KafkaProducer {
private Logger logger = LoggerFactory.getLogger(getClass());
@Autowired
private KafkaTemplate kafkaTemplate;
public void sendMessage(String topic, String message) {
logger.info("on message:{}", message);
kafkaTemplate.send(topic,message);
}
}
消费者配置类:
import java.util.HashMap;
import java.util.Map;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;
@Configuration
@EnableKafka
public class KafkaConsumerConfig {
@Value("${kafka.consumer.servers}")
private String servers;
@Value("${kafka.consumer.enable.auto.commit}")
private boolean enableAutoCommit;
@Value("${kafka.consumer.session.timeout}")
private String sessionTimeout;
@Value("${kafka.consumer.auto.commit.interval}")
private String autoCommitInterval;
@Value("${kafka.consumer.group.id}")
private String groupId;
@Value("${kafka.consumer.auto.offset.reset}")
private String autoOffsetReset;
@Value("${kafka.consumer.concurrency}")
private int concurrency;
@Bean
public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, String>> kafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setConcurrency(concurrency);
factory.getContainerProperties().setPollTimeout(1500);
return factory;
}
public ConsumerFactory<String, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());
}
public Map<String, Object> consumerConfigs() {
Map<String, Object> propsMap = new HashMap<>(8);
propsMap.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
propsMap.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, enableAutoCommit);
propsMap.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, autoCommitInterval);
propsMap.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, sessionTimeout);
propsMap.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
propsMap.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
propsMap.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
propsMap.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset);
return propsMap;
}
}
消费者监听topic消息:
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
@Component
public class KafkaCustermer {
@KafkaListener(topics = {"testt"})
public void listener(String content) {
System.out.println(content);
}
}
经测试 成功接发到消息。
更多推荐
已为社区贡献3条内容
所有评论(0)