storm之spout
一、什么是spoutspout:喷嘴、喷口。即数据从这里发出。spout是storm的数据来源,而spout的数据来源又是从其他地方,比如数据库或者消息中间件中流入的。以Kafka为例,spout先从kafka中拉取数据,然后封装为一个tuple,发给下游的bolt进行处理。对于Kafka来说,spout是消费者;对于bolt来说spout是生产者。为什么要用spout去拉取消息,而不是直...
·
一、什么是spout
spout:喷嘴、喷口。即数据从这里发出。
spout是storm的数据来源,而spout的数据来源又是从其他地方,比如数据库或者消息中间件中流入的。
以Kafka为例,spout先从kafka中拉取数据,然后封装为一个tuple,发给下游的bolt进行处理。对于Kafka来说,spout是消费者;对于bolt来说spout是生产者。
为什么要用spout去拉取消息,而不是直接由bolt接收推送的数据呢,这中拉模式有什么好处呢?
如果,将数据直接推送给bolt,当数据量突然增加的时候,可能导致某一个bolt瘫痪,继而影响整个topology运行;而当没有数据的时候,整个topolog又处于空闲状态,浪费资源。而由spout去拉取消息则不会出现这样的问题。
二、KafkaSpout
KafkaSpout实现了从Kafka拉取数据为storm提供数据源。并且重新实现了ack机制。一般的我们通过简单的配置就可以使用了。
//kafkaSpout配置
private KafkaSpoutConfig<String, String> kafkaSpoutConfig() {
final Fields outputFields = new Fields("topic", "partition", "offset", "timestamp", "key", "msg_from_kafka");
KafkaSpoutConfig<String, String> config;
//consumer的配置
Properties props = new Properties();
//默认由kafkaSpout进行ack后才提交(false),如果自动提交,则kafkaspout的ack失效,可能丢失或重复数据
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
KafkaSpoutRetryService kafkaSpoutRetryService = new KafkaSpoutRetryExponentialBackoff(
TimeInterval.microSeconds(500),
TimeInterval.milliSeconds(2),
1,
TimeInterval.seconds(10));
config = KafkaSpoutConfig
.builder("ip:9092", "topic_test")
//首次消费消息的offset
.setFirstPollOffsetStrategy(KafkaSpoutConfig.FirstPollOffsetStrategy.UNCOMMITTED_EARLIEST)
//最后一个参数为输出字段
.setRecordTranslator((r) -> new Values(r.topic(), r.partition(), r.offset(), r.timestamp(), r.key(), r.value()), outputFields)
//offset自动提交时间间隔,如果设置了enable.auto.commit=true则无效
.setOffsetCommitPeriodMs(1_000)//1秒
//达到这个值后向提交offset
.setMaxUncommittedOffsets(1_000_000)//10万
//group
.setGroupId("test-w")
//kafka consumer配置
.setProp(props)
.setRetry(kafkaSpoutRetryService)
.build();
return config;
}
//拓扑结构
private StormTopology stormTopology() {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new ProducerSpout(kafkaSpoutConfig()), 1);
builder.setBolt("bolt1", new BoltTest(), 1).shuffleGrouping("spout");
return builder.createTopology();
}
kafkaspout的所有配置项:
public static final long DEFAULT_POLL_TIMEOUT_MS = 200L;
public static final long DEFAULT_OFFSET_COMMIT_PERIOD_MS = 30000L;
public static final int DEFAULT_MAX_RETRIES = 2147483647;
public static final int DEFAULT_MAX_UNCOMMITTED_OFFSETS = 10000000;
public static final long DEFAULT_PARTITION_REFRESH_PERIOD_MS = 2000L;
public static final KafkaSpoutRetryService DEFAULT_RETRY_SERVICE = new KafkaSpoutRetryExponentialBackoff(TimeInterval.seconds(0L), TimeInterval.milliSeconds(2L), 2147483647, TimeInterval.seconds(10L));
public static final KafkaSpoutRetryService UNIT_TEST_RETRY_SERVICE = new KafkaSpoutRetryExponentialBackoff(TimeInterval.seconds(0L), TimeInterval.milliSeconds(0L), 2147483647, TimeInterval.milliSeconds(0L));
private final Map<String, Object> kafkaProps;
private final Subscription subscription;
private final SerializableDeserializer<K> keyDes;
private final Class<? extends Deserializer<K>> keyDesClazz;
private final SerializableDeserializer<V> valueDes;
private final Class<? extends Deserializer<V>> valueDesClazz;
private final long pollTimeoutMs;
private final RecordTranslator<K, V> translator;
private final long offsetCommitPeriodMs;
private final int maxUncommittedOffsets;
private final KafkaSpoutConfig.FirstPollOffsetStrategy firstPollOffsetStrategy;
private final KafkaSpoutRetryService retryService;
private final long partitionRefreshPeriodMs;
private final boolean emitNullTuples;
具体含义在后面会总结。
参考资料:
《storm技术内幕与大数据实战》
更多推荐
已为社区贡献2条内容
所有评论(0)