kafka+zookeeper整合springmvc,实现消息队列的生产与消费
zookeeper + kafka 整合 springmvc
整合步骤
- 安装启动zookeeper
- 安装启动kafka
- 创建消息生产者
- 创建消息消费者
1、安装启动zookeeper
zoo.cfg:配置
dataDir=D:\Sofeware\apache-zookeeper-3.5.5-bin\tmp
dataLogDir=D:\Sofeware\apache-zookeeper-3.5.5-bin\logs
双击zkServer.cmd启动
2、安装启动kafka
下载解压
server.properties:配置 zookeeper链接地址
zookeeper.connect=localhost:2181
zookeeper.connection.timeout.ms=6000
启动kafka
cd 到安装目录 .\bin\windows\kafka-server-start.bat .\config\server.properties
D:\Sofeware\kafka_2.11-2.3.0>.\bin\windows\kafka-server-start.bat .\config\serve
r.properties
3、创建消息生产者
applicationContext.xml:配置
加载 kafka.properties 配置文件
导入producer-kafka.xml配置文件
<!-- 装载属性配置文件 -->
<bean id="propertyConfigurer" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="systemPropertiesModeName" value="SYSTEM_PROPERTIES_MODE_OVERRIDE" />
<property name="ignoreResourceNotFound" value="true" />
<property name="locations">
<list>
<value>classpath:conf/kafka.properties</value>
</list>
</property>
</bean>
<!-- 导入kafka配置文件 -->
<import resource="producer-kafka.xml" />
kafka.properties:配置
################# kafka producer ##################
# brokers集群
kafka.producer.bootstrap.servers = localhost:9092
kafka.producer.acks = all
#发送失败重试次数
kafka.producer.retries = 3
kafka.producer.linger.ms = 10
# 33554432 即32MB的批处理缓冲区
kafka.producer.buffer.memory = 40960
#批处理条数:当多个记录被发送到同一个分区时,生产者会尝试将记录合并到更少的请求中。这有助于客户端和服务器的性能
kafka.producer.batch.size = 4096
kafka.producer.defaultTopic = alarm
kafka.producer.key.serializer = org.apache.kafka.common.serialization.StringSerializer
kafka.producer.value.serializer = org.apache.kafka.common.serialization.StringSerializer
producer-kafka.xml:配置
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<!--<context:property-placeholder location="classpath:kafka/kafka.properties" />-->
<!-- 定义producer的参数 -->
<bean id="producerProperties" class="java.util.HashMap">
<constructor-arg>
<map>
<!-- kafka服务地址,可能是集群-->
<entry key="bootstrap.servers" value="${kafka.producer.bootstrap.servers}" />
<!-- 有可能导致broker接收到重复的消息,默认值为3-->
<entry key="retries" value="${kafka.producer.retries}" />
<!-- 每次批量发送消息的数量-->
<entry key="batch.size" value="${kafka.producer.batch.size}" />
<!-- 默认0ms,在异步IO线程被触发后(任何一个topic,partition满都可以触发)-->
<entry key="linger.ms" value="${kafka.producer.linger.ms}" />
<!--producer可以用来缓存数据的内存大小。如果数据产生速度大于向broker发送的速度,producer会阻塞或者抛出异常 -->
<entry key="buffer.memory" value="${kafka.producer.buffer.memory}" />
<!-- producer需要server接收到数据之后发出的确认接收的信号,此项配置就是指procuder需要多少个这样的确认信号-->
<entry key="acks" value="${kafka.producer.acks}" />
<entry key="key.serializer"
value="${kafka.producer.key.serializer}" />
<entry key="value.serializer"
value="${kafka.producer.value.serializer}"/>
</map>
</constructor-arg>
</bean>
<!-- 创建kafkatemplate需要使用的producerfactory bean -->
<bean id="producerFactory"
class="org.springframework.kafka.core.DefaultKafkaProducerFactory">
<constructor-arg>
<ref bean="producerProperties" />
</constructor-arg>
</bean>
<!--<!– 3.定义生产者监听 –>-->
<bean id="kafkaProducerListener" class="com.bdxh.rpc.service.KafkaProducerListener" />
<!-- 创建kafkatemplate bean,使用的时候,只需要注入这个bean,即可使用template的send消息方法 -->
<bean id="kafkaTemplate" class="org.springframework.kafka.core.KafkaTemplate">
<constructor-arg ref="producerFactory" />
<constructor-arg name="autoFlush" value="true" />
<!--设置对应topic-->
<property name="defaultTopic" value="${kafka.producer.defaultTopic}" />
</bean>
</beans>
创建producer-kafka.xml中的 KafkaProducerListener.java监听类.
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.log4j.Logger;
import org.springframework.kafka.support.ProducerListener;
public class KafkaProducerListener implements ProducerListener {
protected final Logger logger = Logger.getLogger(KafkaProducerListener.class.getName());
public KafkaProducerListener(){
}
@Override
public void onSuccess(String topic, Integer partition, Object key, Object value, RecordMetadata recordMetadata) {
logger.info("-----------------kafka发送数据成功");
logger.info("----------topic:"+topic);
logger.info("----------partition:"+partition);
logger.info("----------key:"+key);
logger.info("----------value:"+value);
logger.info("----------RecordMetadata:"+recordMetadata);
logger.info("-----------------kafka发送数据结束");
}
@Override
public void onError(String topic, Integer partition, Object key, Object value, Exception e) {
logger.info("-----------------kafka发送数据失败");
logger.info("----------topic:"+topic);
logger.info("----------partition:"+partition);
logger.info("----------key:"+key);
logger.info("----------value:"+value);
logger.info("-----------------kafka发送数据失败结束");
e.printStackTrace();
}
/**
* 是否启动Producer监听器
* @return
*/
@Override
public boolean isInterestedInSuccess() {
return false;
}
}
最后加上POM依赖
<!-- zookeeper -->
<dependency>
<groupId>com.101tec</groupId>
<artifactId>zkclient</artifactId>
<version>0.3</version>
</dependency>
<dependency>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
<version>3.4.5</version>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>dubbo</artifactId>
<version>2.5.3</version>
<scope>compile</scope>
<exclusions>
<exclusion>
<artifactId>spring</artifactId>
<groupId>org.springframework</groupId>
</exclusion>
</exclusions>
</dependency>
<!-- kafka -->
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>1.0.1</version>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>1.3.5.RELEASE</version>
<exclusions>
<exclusion>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
</exclusion>
</exclusions>
</dependency>
写个Controller 方法用来测试:
@Resource
private KafkaTemplate<Integer, String> kafkaTemplate;
/**
* 发送消息 - 测试
*/
@RequestMapping("/sendTest")
@ResponseBody
public BaseResp sendTest(HttpServletRequest request) {
kafkaTemplate.sendDefault("Im from producer !");
System.out.println("send success !");
return BaseResp.success("发送成功");
}
4、创建消息消费者
applicationContext.xml:配置
加载kafka.properties配置
导入consumer-kafka.xml配置文件
<!-- 装载属性配置文件 -->
<bean id="propertyConfigurer" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="systemPropertiesModeName" value="SYSTEM_PROPERTIES_MODE_OVERRIDE" />
<property name="ignoreResourceNotFound" value="true" />
<property name="locations">
<list>
<value>classpath:conf/kafka.properties</value>
</list>
</property>
</bean>
<!-- 导入consumer-kafka.xml配置文件 -->
<import resource="consumer-kafka.xml" />
kafka.properties 配置文件:
################# kafka consumer ##################
kafka.consumer.bootstrap.servers = localhost:9092
# 如果为true,消费者的偏移量将在后台定期提交
kafka.consumer.enable.auto.commit = true
#如何设置为自动提交(enable.auto.commit=true),这里设置自动提交周期
kafka.consumer.auto.commit.interval.ms=1000
#order-beta 消费者群组ID,发布-订阅模式,即如果一个生产者,多个消费者都要消费,那么需要定义自己的群组,同一群组内的消费者只有一个能消费到消息
kafka.consumer.group.id = ebike-alarm
#告警topic
kafka.alarm.topic = alarm
#在使用Kafka的组管理时,用于检测消费者故障的超时
kafka.consumer.session.timeout.ms = 30000
kafka.consumer.key.deserializer = org.apache.kafka.common.serialization.StringDeserializer
kafka.consumer.value.deserializer = org.apache.kafka.common.serialization.StringDeserializer
consumer-kafka.xml 配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<!-- 1.定义consumer的参数 -->
<!--<context:property-placeholder location="classpath*:kafka/kafka.properties" />-->
<bean id="consumerProperties" class="java.util.HashMap">
<constructor-arg>
<map>
<!--Kafka服务地址 -->
<entry key="bootstrap.servers" value="${kafka.consumer.bootstrap.servers}" />
<!--Consumer的组ID,相同goup.id的consumer属于同一个组。 -->
<entry key="group.id" value="${kafka.consumer.group.id}" />
<!--如果此值设置为true,consumer会周期性的把当前消费的offset值保存到zookeeper。当consumer失败重启之后将会使用此值作为新开始消费的值。 -->
<entry key="enable.auto.commit" value="${kafka.consumer.enable.auto.commit}" />
<!--网络请求的socket超时时间。实际超时时间由max.fetch.wait + socket.timeout.ms 确定 -->
<entry key="session.timeout.ms" value="${kafka.consumer.session.timeout.ms}" />
<entry key="auto.commit.interval.ms" value="${kafka.consumer.auto.commit.interval.ms}" />
<entry key="retry.backoff.ms" value="100" />
<entry key="key.deserializer"
value="${kafka.consumer.key.deserializer}" />
<entry key="value.deserializer"
value="${kafka.consumer.value.deserializer}" />
</map>
</constructor-arg>
</bean>
<!-- 创建consumerFactory bean -->
<bean id="consumerFactory"
class="org.springframework.kafka.core.DefaultKafkaConsumerFactory" >
<constructor-arg>
<ref bean="consumerProperties" />
</constructor-arg>
</bean>
<!--指定具体监听类的bean -->
<bean id="kafkaConsumerService" class="com.bdxh.ebike.api.controller.KafkaConsumerMessageListener" />
<!-- 4.消费者容器配置信息 -->
<bean id="containerProperties" class="org.springframework.kafka.listener.config.ContainerProperties">
<!-- topic -->
<constructor-arg name="topics">
<list>
<value>${kafka.alarm.topic}</value>
</list>
</constructor-arg>
<property name="messageListener" ref="kafkaConsumerService" />
</bean>
<!-- 5.消费者并发消息监听容器,执行doStart()方法 -->
<bean id="messageListenerContainer" class="org.springframework.kafka.listener.ConcurrentMessageListenerContainer" init-method="doStart" >
<constructor-arg ref="consumerFactory" />
<constructor-arg ref="containerProperties" />
</bean>
</beans>
创建consumer-kafka.xml 配置中的 KafkaConsumerMessageListener.java 监听类
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.log4j.Logger;
import org.springframework.kafka.listener.MessageListener;
public class KafkaConsumerMessageListener implements MessageListener<String,Object> {
private Logger logger = Logger.getLogger(KafkaConsumerMessageListener.class.getName());
public KafkaConsumerMessageListener(){
}
/**
* 消息接收-LOG日志处理
* @param record
*/
@Override
public void onMessage(ConsumerRecord<String, Object> record) {
logger.info("=============kafka消息订阅=============");
String topic = record.topic();
String key = record.key();
Object value = record.value();
long offset = record.offset();
int partition = record.partition();
/*if (ConstantKafka.KAFKA_TOPIC1.equals(topic)){
doSaveLogs(value.toString());
}*/
Object o = record.value();
logger.info(o.toString());
logger.info("-------------topic:"+topic);
logger.info("-------------value:"+value);
logger.info("-------------key:"+key);
logger.info("-------------offset:"+offset);
logger.info("-------------partition:"+partition);
logger.info("=============kafka消息订阅=============");
}
}
consumer 消费者POM依赖:(和producer生产者一致)
<dependency>
<groupId>com.101tec</groupId>
<artifactId>zkclient</artifactId>
<version>0.3</version>
</dependency>
<dependency>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
<version>3.4.5</version>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>dubbo</artifactId>
<version>2.5.3</version>
<scope>compile</scope>
<exclusions>
<exclusion>
<artifactId>spring</artifactId>
<groupId>org.springframework</groupId>
</exclusion>
</exclusions>
</dependency>
到此一切都配置完成。做个测试:
- 启动zookeeper
- 启动kafka
- 启动producer 消息提供者项目
- 启动consumer 消息消费者项目
- 调用producer 中 测试的controller --> /sendTest
结果:
producer:
consumer:
成功的生产了消息,和消费了消息。
完结 。
更多推荐
所有评论(0)