SparkStreaming消费Kafka中的数据 使用zookeeper和MySQL保存偏移量的两种方式
Spark读取Kafka数据的方式有两种,一种是receiver方式,另一种是直连方式。今天分享的SparkStreaming消费Kafka中的数据保存偏移量的两种方式都是基于直连方式上的话不多说 直接上代码 !第一种是使用zookeeper保存偏移量object KafkaDirectZookeeper {def main(args: Array[String]): Unit = ...
·
Spark读取Kafka数据的方式有两种,一种是receiver方式,另一种是直连方式。今天分享的SparkStreaming消费Kafka中的数据保存偏移量的两种方式都是基于直连方式上的
话不多说 直接上代码 !
第一种是使用zookeeper保存偏移量
object KafkaDirectZookeeper {
def main(args: Array[String]): Unit = {
val group = "DirectAndZk"
val conf = new SparkConf().setAppName("KafkaDirectWordCount").setMaster("local[2]")
val ssc = new StreamingContext(conf, Duration(5000))
val topic = "ditopic"
//指定kafka的broker地址(sparkStream的Task直连到kafka的分区上,用更加底层的API消费,效率更高)
val brokerList = "hadoop01:9092,hadoop02:9092,hadoop03:9092"
//指定zk的地址,后期更新消费的偏移量时使用(以后可以使用Redis、MySQL来记录偏移量)
val zkQuorum = "hadoop01:2181,hadoop02:2181,hadoop03:2181"
//创建 stream 时使用的 topic 名字集合,SparkStreaming可同时消费多个topic
val topics: Set[String] = Set(topic)
//创建一个 ZKGroupTopicDirs 对象,其实是指定往zk中写入数据的目录,用于保存偏移量
val topicDirs = new ZKGroupTopicDirs(group, topic)
// new ZKGroupTopicDirs()
//获取 zookeeper 中的路径 "/g001/offsets/wordcount/"
val zkTopicPath = s"${topicDirs.consumerOffsetDir}"
//准备kafka的参数
val kafkaParams = Map(
"metadata.broker.list" -> brokerList,
"group.id" -> group,
//从头开始读取数据
"auto.offset.reset" -> kafka.api.OffsetRequest.SmallestTimeString
)
//zookeeper 的host 和 ip,创建一个 client,用于跟新偏移量量的
//是zookeeper的客户端,可以从zk中读取偏移量数据,并更新偏移量
val zkClient = new ZkClient(zkQuorum)
//查询该路径下是否字节点(默认有字节点为我们自己保存不同 partition 时生成的)
// /g001/offsets/wordcount/0/10001"
// /g001/offsets/wordcount/1/30001"
// /g001/offsets/wordcount/2/10001"
//zkTopicPath -> /g001/offsets/wordcount/
val children = zkClient.countChildren(zkTopicPath)
var kafkaStream: InputDStream[(String, String)] = null
//如果 zookeeper 中有保存 offset,我们会利用这个 offset 作为 kafkaStream 的起始位置
var fromOffsets: Map[TopicAndPartition, Long] = Map()
//如果保存过 offset
if (children > 0) {
for (i <- 0 until children) {
// /g001/offsets/wordcount/0/10001
// /g001/offsets/wordcount/0
val partitionOffset = zkClient.readData[String](s"$zkTopicPath/${i}")
// wordcount/0
val tp = TopicAndPartition(topic, i)
//将不同 partition 对应的 offset 增加到 fromOffsets 中
// wordcount/0 -> 10001
fromOffsets += (tp -> partitionOffset.toLong)
}
//Key: kafka的key values: "hello tom hello jerry"
//这个会将 kafka 的消息进行 transform,最终 kafak 的数据都会变成 (kafka的key, message) 这样的 tuple
val messageHandler = (mmd: MessageAndMetadata[String, String]) => (mmd.key(), mmd.message())
//通过KafkaUtils创建直连的DStream(fromOffsets参数的作用是:按照前面计算好了的偏移量继续消费数据)
//[String, String, StringDecoder, StringDecoder, (String, String)]
// key value key的解码方式 value的解码方式
kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](ssc, kafkaParams, fromOffsets, messageHandler)
} else {
//如果未保存,根据 kafkaParam 的配置使用最新(largest)或者最旧的(smallest) offset
kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
}
//偏移量的范围
var offsetRanges = Array[OffsetRange]()
//如果你调用了DStream的Transformation,就不能使用直连方式
kafkaStream.foreachRDD { kafkaRDD =>
//只有KafkaRDD可以强转成HasOffsetRanges,并获取到偏移量
offsetRanges = kafkaRDD.asInstanceOf[HasOffsetRanges].offsetRanges
//val lines: RDD[String] = kafkaRDD.map(_._2)
//对RDD进行操作,触发Action
lines.foreachPartition(partition =>
partition.foreach(x => {
println(x)
})
)
for (o <- offsetRanges) {
// /g001/offsets/wordcount/0
val zkPath = s"${topicDirs.consumerOffsetDir}/${o.partition}"
//将该 partition 的 offset 保存到 zookeeper
// /g001/offsets/wordcount/0/20000
ZkUtils.updatePersistentPath(zkClient, zkPath, o.untilOffset.toString)
}
}
ssc.start()
ssc.awaitTermination()
}
}
第二种是通过MySQL保存偏移量
注意:这种方式使用的是scalikejdbc
导入以下依赖
<dependency>
<groupId>org.scalikejdbc</groupId>
<artifactId>scalikejdbc_2.11</artifactId>
<version>2.5.0</version>
</dependency>
<dependency>
<groupId>org.scalikejdbc</groupId>
<artifactId>scalikejdbc-core_2.11</artifactId>
<version>2.5.0</version>
</dependency>
<dependency>
<groupId>org.scalikejdbc</groupId>
<artifactId>scalikejdbc-config_2.11</artifactId>
<version>2.5.0</version>
</dependency>
需要配置以下数据库连接
db.default.driver="com.mysql.jdbc.Driver"
db.default.url="jdbc:mysql://localhost:3306/test?characterEncoding="utf-8""
db.default.user="root"
db.default.password="root"
import com.alibaba.fastjson.{JSON, JSONObject}
import kafka.common.TopicAndPartition
import kafka.message.{Message, MessageAndMetadata}
import kafka.serializer.StringDecoder
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka.KafkaCluster.Err
import org.apache.spark.streaming.kafka.{HasOffsetRanges, KafkaCluster, KafkaUtils}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scalikejdbc.{DB, SQL}
import scalikejdbc.config.DBs
object SparkStreamingOffsetMysql {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("ssom").setMaster("local[2]")
val ssc = new StreamingContext(conf, Seconds(3))
val groupId = "didi"
val brokerList = "hadoop01:9092,hadoop02:9092,hadoop03:9092"
val topic = "ditopic"
val topics = Set(topic)
val kafkas = Map(
"metadata.broker.list" -> brokerList,
"group.id" -> groupId,
"auto.offset.reset" -> kafka.api.OffsetRequest.SmallestTimeString)
DBs.setup()
// 直接查询mysql中的offset
val fromOffset: Map[TopicAndPartition, Long] =
DB.readOnly {
implicit session => {
SQL(s"select * from offset where groupId = '${groupId}'")
//查询出来后 将数据赋值给元组
.map(m => (TopicAndPartition(
m.string("topic"), m.int("partitions")), m.long("untilOffset")))
.toList().apply()
}.toMap //最后要toMap因为前面的返回值已经给定
}
//创建一个InputDStram 然后根据offset读取数据
var kafkaStream: InputDStream[(String, String)] = null
//从mysql中获取数据进行判断
if (fromOffset.size == 0) {
//如果程序第一次启动
kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
ssc, kafkas, topics)
} else {
//如果程序不是第一次启动
var checckOffset = Map[TopicAndPartition, Long]()
val kafkaCluster = new KafkaCluster(kafkas)
val earliesOffset: Either[Err, Map[TopicAndPartition, KafkaCluster.LeaderOffset]] =
kafkaCluster.getEarliestLeaderOffsets(fromOffset.keySet)
//然后开始比较大小 用Mysql中的offset和kafka的offset进行比较
if (earliesOffset.isRight) {
val topicAndPartitionOffset: Map[TopicAndPartition, KafkaCluster.LeaderOffset] = earliesOffset.right.get
//来个直接进行比较大小
fromOffset.map(owner => {
//取kafka汇总的offset
val topicOffset = topicAndPartitionOffset.get(owner._1).get.offset
if (owner._2 > topicOffset) {
owner
} else {
(owner._1, topicOffset)
}
})
}
val messageHandler = (mmd: MessageAndMetadata[String, String]) => {
(mmd.key(), mmd.message())
}
kafkaStream = KafkaUtils.createDirectStream[String, String,
StringDecoder, StringDecoder, (String, String)](
ssc, kafkas, checckOffset, messageHandler)
}
kafkaStream.foreachRDD(kafkaRDD => {
val offsetRanges = kafkaRDD.asInstanceOf[HasOffsetRanges].offsetRanges
kafkaRDD.map(_._2).foreachPartition(partition =>
partition.foreach(x => {
println(x)
})
DB.localTx {
implicit session =>
for (os <- offsetRanges) {
/* SQL("update offset set groupId=?,topic=?,partitions=?,untilOffset=?")
.bind(groupId,os.topic,os.partition,os.untilOffset).update().apply()*/
SQL("replace into offset(groupId,topic,partitions,untilOffset) values(?,?,?,?)")
.bind(groupId, os.topic, os.partition, os.untilOffset).update().apply()
}
}
})
ssc.start()
ssc.awaitTermination()
}
}
更多推荐
已为社区贡献5条内容
所有评论(0)