Spark Streaming整合Kafka
Spark Streaming整合Kafka开发:Spark Streaming从Kafka中接收数据,这里将会介绍两种方法:(1)、使用Receivers和Kafka高层次的API;(2)、使用DirectAPI,这是使用低层次的KafkaAPI,并没有使用到Receivers,是Spark 1.3.0中开始引入的。这两种方法有不同的编程模型。一、基于Receivers的方法这
·
Spark Streaming整合Kafka开发:
Spark Streaming从Kafka中接收数据,这里将会介绍两种方法:(1)、使用Receivers和Kafka高层次的API;(2)、使用Direct API,这是使用低层次的KafkaAPI,并没有使用到Receivers,是Spark 1.3.0中开始引入的。这两种方法有不同的编程模型。
一、基于Receivers的方法
这个方法使用了Receivers来接收数据。Receivers的实现使用到Kafka高层次的消费者API。对于所有的Receivers,接收到的数据将会保存在Spark executors中,然后由Spark Streaming启动的Job来处理这些数据。然而,在默认的配置下,这种方法在失败的情况下会丢失数据,为了保证零数据丢失,你可以在Spark Streaming中使用WAL日志,这是在Spark 1.2.0才引入的功能,这使得我们可以将接收到的数据保存到WAL中(WAL日志可以存储在HDFS上),所以在失败的时候,我们可以从WAL中恢复,而不至于丢失数据。
1、引入依赖。
于Scala和Java项目,你可以在你的pom.xml文件引入以下依赖:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.10</artifactId>
<version>1.3.0</version>
</dependency>
如果你是使用SBT,可以这么引入:
libraryDependencies += "org.apache.spark" % "spark-streaming-kafka_2.10" % "1.3.0"
2、编程
在Streaming程序中,引入KafkaUtils,并创建一个输入DStream:
import org.apache.spark.streaming.kafka._
val kafkaStream = KafkaUtils.createStream(streamingContext,[ZK quorum], [consumer group id], [per-topic number of Kafka partitions to consume])
在创建DStream的时候,你也可以指定数据的Key和Value类型,并指定相应的解码类。
需要注意的是:
1、Kafka中Topic的分区和Spark Streaming生成的RDD中分区不是一个概念。所以,在 KafkaUtils.createStream()增加特定主题分区数仅仅是增加一个receiver中消费Topic的线程数。并不增加Spark并行处理数据的数量;
2、对于不同的Group和tpoic我们可以使用多个receivers创建不同的DStreams来并行接收数据;
3、如果你启用了WAL,这些接收到的数据将会被持久化到日志中,因此,我们需要将storage level 设置为StorageLevel.MEMORY_AND_DISK_SER ,也就是:
KafkaUtils.createStream(..., StorageLevel.MEMORY_AND_DISK_SER)
3、部署
对应任何的Spark 应用,我们都是用spark-submit来启动你的应用程序,对于Scala和Java用户,如果你使用的是SBT或者是Maven,你可以将spark-streaming-kafka_2.10及其依赖打包进应用程序的Jar文件中,并确保spark-core_2.10和 spark-streaming_2.10标记为provided,因为它们在Spark 安装包中已经存在:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>1.3.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.3.0</version>
<scope>provided</scope>
</dependency>
然后使用spark-submit来启动你的应用程序。
当然,你也可以不在应用程序Jar文件中打包spark-streaming-kafka_2.10及其依赖,我们可以在spark-submit后面加上--jars参数也可以运行你的程序:
[root@node4 ~]# spark-1.3.0-bin-2.6.0/bin/spark-submit --master yarn-cluster
--class iteblog.KafkaTest
--jars lib/spark-streaming-kafka_2.10-1.3.0.jar,
lib/spark-streaming_2.10-1.3.0.jar,
lib/kafka_2.10-0.8.1.1.jar,lib/zkclient-0.3.jar,
lib/metrics-core-2.2.0.jar ./iteblog-1.0-SNAPSHOT.jar
完整的例子:
二、使用Spark 1.3.0引入的Direct API从Kafka中读数据
和基于Receiver接收数据不一样,这种方式定期地从Kafka的topic+partition中查询最新的偏移量,再根据定义的偏移量范围在每个batch里面处理数据。当作业需要处理的数据来临时,spark通过调用Kafka的简单消费者API读取一定范围的数据。这个特性目前还处于试验阶段,而且仅仅在Scala和Java语言中提供相应的API。
和基于Receiver方式相比,这种方式主要有一些几个优点:
(1)、简化并行。我们不需要创建多个Kafka 输入流,然后union他们。而使用directStream,Spark Streaming将会创建和Kafka分区一样的RDD分区个数,而且会从Kafka并行地读取数据,也就是说Spark分区将会和Kafka分区有一一对应的关系,这对我们来说很容易理解和使用;
(2)、高效。第一种实现零数据丢失是通过将数据预先保存在WAL中,这将会复制一遍数据,这种方式实际上很不高效,因为这导致了数据被拷贝两次:一次是被Kafka复制;另一次是写到WAL中。但是本文介绍的方法因为没有Receiver,从而消除了这个问题,所以不需要WAL日志;
(3)、恰好一次语义(Exactly-once semantics)。上面通过使用Kafka高层次的API把偏移量写入Zookeeper中,这是读取Kafka中数据的传统方法。虽然这种方法可以保证零数据丢失,但是还是存在一些情况导致数据会丢失,因为在失败情况下通过Spark Streaming读取偏移量和Zookeeper中存储的偏移量可能不一致。而本文提到的方法是通过Kafka低层次的API,并没有使用到Zookeeper,偏移量仅仅被Spark Streaming保存在Checkpoint中。这就消除了Spark Streaming和Zookeeper中偏移量的不一致,而且可以保证每个记录仅仅被Spark Streaming读取一次,即使是出现故障。
但是本方法唯一的坏处就是没有更新Zookeeper中的偏移量,所以基于Zookeeper的Kafka监控工具将会无法显示消费的状况。然而你可以通过Spark提供的API手动地将偏移量写入到Zookeeper中。如何使用呢?其实和方法一差不多;
1、引入依赖。
对于Scala和Java项目,你可以在你的pom.xml文件引入以下依赖:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.10</artifactId>
<version>1.3.0</version>
</dependency>
如果你是使用SBT,可以这么引入:
libraryDependencies += "org.apache.spark" % "spark-streaming-kafka_2.10" % "1.3.0"
2、编程
在Streaming应用程序代码中,引入KafkaUtils ,并创建DStream输入流:
import org.apache.spark.streaming.kafka.
val directKafkaStream = KafkaUtils.createDirectStream
[key class], [value class], [key decoder class], [value decoder class]
在 Kafka parameters参数中,你必须指定 metadata.broker.list或者bootstrap.servers参数。在默认情况下,Spark Streaming将会使用最大的偏移量来读取Kafka每个分区的数据。如果你配置了auto.offset.reset为smallest,那么它将会从最小的偏移量开始消费。
当然,你也可以使用KafkaUtils.createDirectStream的另一个版本从任意的位置消费数据。如果你想回去每个batch中Kafka的偏移量,你可以如下操作:
还有一点需要注意,因为这里介绍的方法没有使用到Receiver,所以Spark中关于spark.streaming.receiver. 相关的配置参数将不会对创建DStreams 有影响。我们可以使用spark.streaming.kafka. 参数进行配置。
3、部署
对应任何的Spark 应用,我们都是用spark-submit来启动你的应用程序,对于Scala和Java用户,如果你使用的是SBT或者是Maven,你可以将spark-streaming-kafka_2.10及其依赖打包进应用程序的Jar文件中,并确保spark-core_2.10和 spark-streaming_2.10标记为provided,因为它们在Spark 安装包中已经存在:
Spark Streaming从Kafka中接收数据,这里将会介绍两种方法:(1)、使用Receivers和Kafka高层次的API;(2)、使用Direct API,这是使用低层次的KafkaAPI,并没有使用到Receivers,是Spark 1.3.0中开始引入的。这两种方法有不同的编程模型。
一、基于Receivers的方法
这个方法使用了Receivers来接收数据。Receivers的实现使用到Kafka高层次的消费者API。对于所有的Receivers,接收到的数据将会保存在Spark executors中,然后由Spark Streaming启动的Job来处理这些数据。然而,在默认的配置下,这种方法在失败的情况下会丢失数据,为了保证零数据丢失,你可以在Spark Streaming中使用WAL日志,这是在Spark 1.2.0才引入的功能,这使得我们可以将接收到的数据保存到WAL中(WAL日志可以存储在HDFS上),所以在失败的时候,我们可以从WAL中恢复,而不至于丢失数据。
1、引入依赖。
于Scala和Java项目,你可以在你的pom.xml文件引入以下依赖:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.10</artifactId>
<version>1.3.0</version>
</dependency>
如果你是使用SBT,可以这么引入:
libraryDependencies += "org.apache.spark" % "spark-streaming-kafka_2.10" % "1.3.0"
2、编程
在Streaming程序中,引入KafkaUtils,并创建一个输入DStream:
import org.apache.spark.streaming.kafka._
val kafkaStream = KafkaUtils.createStream(streamingContext,[ZK quorum], [consumer group id], [per-topic number of Kafka partitions to consume])
在创建DStream的时候,你也可以指定数据的Key和Value类型,并指定相应的解码类。
需要注意的是:
1、Kafka中Topic的分区和Spark Streaming生成的RDD中分区不是一个概念。所以,在 KafkaUtils.createStream()增加特定主题分区数仅仅是增加一个receiver中消费Topic的线程数。并不增加Spark并行处理数据的数量;
2、对于不同的Group和tpoic我们可以使用多个receivers创建不同的DStreams来并行接收数据;
3、如果你启用了WAL,这些接收到的数据将会被持久化到日志中,因此,我们需要将storage level 设置为StorageLevel.MEMORY_AND_DISK_SER ,也就是:
KafkaUtils.createStream(..., StorageLevel.MEMORY_AND_DISK_SER)
3、部署
对应任何的Spark 应用,我们都是用spark-submit来启动你的应用程序,对于Scala和Java用户,如果你使用的是SBT或者是Maven,你可以将spark-streaming-kafka_2.10及其依赖打包进应用程序的Jar文件中,并确保spark-core_2.10和 spark-streaming_2.10标记为provided,因为它们在Spark 安装包中已经存在:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>1.3.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.3.0</version>
<scope>provided</scope>
</dependency>
然后使用spark-submit来启动你的应用程序。
当然,你也可以不在应用程序Jar文件中打包spark-streaming-kafka_2.10及其依赖,我们可以在spark-submit后面加上--jars参数也可以运行你的程序:
[root@node4 ~]# spark-1.3.0-bin-2.6.0/bin/spark-submit --master yarn-cluster
--class iteblog.KafkaTest
--jars lib/spark-streaming-kafka_2.10-1.3.0.jar,
lib/spark-streaming_2.10-1.3.0.jar,
lib/kafka_2.10-0.8.1.1.jar,lib/zkclient-0.3.jar,
lib/metrics-core-2.2.0.jar ./iteblog-1.0-SNAPSHOT.jar
完整的例子:
object KafkaWordCount {
def main(args: Array[String]) {
if (args.length < 4) {
System.err.println("Usage: KafkaWordCount ")
System.exit(1)
}
StreamingExamples.setStreamingLogLevels()
val Array(zkQuorum, group, topics, numThreads) = args
val sparkConf = new SparkConf().setAppName("KafkaWordCount")
val ssc = new StreamingContext(sparkConf, Seconds(2))
ssc.checkpoint("checkpoint")
val topicMap = topics.split(",").map((,numThreads.toInt)).toMap
val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(.2)
val words = lines.flatMap(.split(" "))
val wordCounts = words.map(x => (x, 1L))
.reduceByKeyAndWindow(_ + , _ - _, Minutes(10), Seconds(2), 2)
wordCounts.print()
/**
* 在StreamingContext调用start方法的内部其实是会启动JobScheduler的Start方法,进行消息循环,在JobScheduler
* 的start内部会构造JobGenerator和ReceiverTacker,并且调用JobGenerator和ReceiverTacker的start方法:
* 1,JobGenerator启动后会不断的根据batchDuration生成一个个的Job
* 2,ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动ReceiverSupervisor),在Receiver收到
* 数据后会通过ReceiverSupervisor存储到Executor并且把数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker
* 内部会通过ReceivedBlockTracker来管理接受到的元数据信息
* 每个BatchInterval会产生一个具体的Job,其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD
* 的DAG而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler,在JobScheduler中通过线程池的方式找到一个
* 单独的线程来提交Job到集群运行(其实是在线程中基于RDD的Action触发真正的作业的运行),为什么使用线程池呢?
* 1.作业不断生成,所以为了提升效率,我们需要线程池;这和在Executor中通过线程池执行Task有异曲同工之妙;
* 2.有可能设置了Job的FAIR公平调度的方式,这个时候也需要多线程的支持;
*/
ssc.start()
ssc.awaitTermination()
}
}
二、使用Spark 1.3.0引入的Direct API从Kafka中读数据
和基于Receiver接收数据不一样,这种方式定期地从Kafka的topic+partition中查询最新的偏移量,再根据定义的偏移量范围在每个batch里面处理数据。当作业需要处理的数据来临时,spark通过调用Kafka的简单消费者API读取一定范围的数据。这个特性目前还处于试验阶段,而且仅仅在Scala和Java语言中提供相应的API。
和基于Receiver方式相比,这种方式主要有一些几个优点:
(1)、简化并行。我们不需要创建多个Kafka 输入流,然后union他们。而使用directStream,Spark Streaming将会创建和Kafka分区一样的RDD分区个数,而且会从Kafka并行地读取数据,也就是说Spark分区将会和Kafka分区有一一对应的关系,这对我们来说很容易理解和使用;
(2)、高效。第一种实现零数据丢失是通过将数据预先保存在WAL中,这将会复制一遍数据,这种方式实际上很不高效,因为这导致了数据被拷贝两次:一次是被Kafka复制;另一次是写到WAL中。但是本文介绍的方法因为没有Receiver,从而消除了这个问题,所以不需要WAL日志;
(3)、恰好一次语义(Exactly-once semantics)。上面通过使用Kafka高层次的API把偏移量写入Zookeeper中,这是读取Kafka中数据的传统方法。虽然这种方法可以保证零数据丢失,但是还是存在一些情况导致数据会丢失,因为在失败情况下通过Spark Streaming读取偏移量和Zookeeper中存储的偏移量可能不一致。而本文提到的方法是通过Kafka低层次的API,并没有使用到Zookeeper,偏移量仅仅被Spark Streaming保存在Checkpoint中。这就消除了Spark Streaming和Zookeeper中偏移量的不一致,而且可以保证每个记录仅仅被Spark Streaming读取一次,即使是出现故障。
但是本方法唯一的坏处就是没有更新Zookeeper中的偏移量,所以基于Zookeeper的Kafka监控工具将会无法显示消费的状况。然而你可以通过Spark提供的API手动地将偏移量写入到Zookeeper中。如何使用呢?其实和方法一差不多;
1、引入依赖。
对于Scala和Java项目,你可以在你的pom.xml文件引入以下依赖:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.10</artifactId>
<version>1.3.0</version>
</dependency>
如果你是使用SBT,可以这么引入:
libraryDependencies += "org.apache.spark" % "spark-streaming-kafka_2.10" % "1.3.0"
2、编程
在Streaming应用程序代码中,引入KafkaUtils ,并创建DStream输入流:
import org.apache.spark.streaming.kafka.
val directKafkaStream = KafkaUtils.createDirectStream
[key class], [value class], [key decoder class], [value decoder class]
在 Kafka parameters参数中,你必须指定 metadata.broker.list或者bootstrap.servers参数。在默认情况下,Spark Streaming将会使用最大的偏移量来读取Kafka每个分区的数据。如果你配置了auto.offset.reset为smallest,那么它将会从最小的偏移量开始消费。
当然,你也可以使用KafkaUtils.createDirectStream的另一个版本从任意的位置消费数据。如果你想回去每个batch中Kafka的偏移量,你可以如下操作:
directKafkaStream.foreachRDD { rdd =>
val offsetRanges = rdd.asInstanceOf[HasOffsetRanges]
// offsetRanges.length = # of Kafka partitions being consumed
...
}
你可以通过这种方式来手动地更新Zookeeper里面的偏移量,使得基于Zookeeper偏移量的Kafka监控工具可以使用。
还有一点需要注意,因为这里介绍的方法没有使用到Receiver,所以Spark中关于spark.streaming.receiver. 相关的配置参数将不会对创建DStreams 有影响。我们可以使用spark.streaming.kafka. 参数进行配置。
3、部署
对应任何的Spark 应用,我们都是用spark-submit来启动你的应用程序,对于Scala和Java用户,如果你使用的是SBT或者是Maven,你可以将spark-streaming-kafka_2.10及其依赖打包进应用程序的Jar文件中,并确保spark-core_2.10和 spark-streaming_2.10标记为provided,因为它们在Spark 安装包中已经存在:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>1.3.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.3.0</version>
<scope>provided</scope>
</dependency>
然后使用spark-submit来启动你的应用程序。更多推荐
已为社区贡献1条内容
所有评论(0)