MySQL FlinkCDC 通过Kafka实时同步到ClickHouse(自定义Debezium格式支持增加删除修改)

把MySQL多库多表的数据通过FlinkCDC DataStream的方式实时同步到同一个Kafka的Topic中,然后下游再写Flink SQL拆分把数据写入到ClickHouse,FlinkCDC DataStream通过自定义Debezium格式的序列化器,除了增加,还能进行删除修改。关于Debezium格式的更多信息,参考Flink官网,网址如下。

https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/connectors/table/formats/debezium/

相关依赖

 <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-core</artifactId>
            <version>${flink.version}</version>
            <!--            <scope>provided</scope>-->
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_${flink.scala.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_${flink.scala.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.2.2</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.21</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table</artifactId>
            <version>${flink.version}</version>
            <type>pom</type>
            <!--            <scope>provided</scope>-->
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner-blink_${flink.scala.version}</artifactId>
            <version>1.13.5</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner_2.12</artifactId>
            <version>${flink.version}</version>
            <!--            <scope>provided</scope>-->
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-java-bridge_2.12</artifactId>
            <version>${flink.version}</version>
            <!--            <scope>provided</scope>-->
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-common</artifactId>
            <version>${flink.version}</version>
            <!--            <scope>provided</scope>-->
        </dependency>


        <dependency>
            <groupId>com.ververica</groupId>
            <artifactId>flink-connector-mysql-cdc</artifactId>
            <version>2.2.0</version>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.75</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_${flink.scala.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-clickhouse</artifactId>
            <version>1.12.7-SNAPSHOT</version>
        </dependency>

    </dependencies>

FlinkCDC DataStream主程序

  • MySQL FlinkCDC DataStream方式时区有问题,快8小时,需要自己处理一下
public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        //2.1 开启 Checkpoint,每隔 5 秒钟做一次 CK
        env.enableCheckpointing(5000L);

        //2.2 指定 CK 的一致性语义
        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
        //2.3 设置任务关闭的时候保留最后一次 CK 数据
        env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
        //2.4 指定从 CK 自动重启策略
        env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 2000L));
        //2.5 设置状态后端
        env.setStateBackend(new FsStateBackend("hdfs://master:8020/flink/cdc"));
        //2.6 设置访问 HDFS 的用户名
        System.setProperty("HADOOP_USER_NAME", "hadoop");

        String hostname = "88.88.88.888";
        int port = 3306;
        String username = "root";
        String password = "password";
        String databaseList = "test";
        String[] databases = databaseList.split(",");
        String tableList = "test.user";
        String[] tables = tableList.split(",");

        MySqlSource<String> mySQLSource = MySqlSource.<String>builder()
        .hostname(hostname)
        .port(port)
        .username(username)
        .password(password)
        .databaseList(databases)
        .tableList(tables)  //可选配置项,如果不指定该参数,则会读取上一个配置下的所有表的数据
        .startupOptions(StartupOptions.initial())
        .deserializer(new MyDebeziumSchema())
        .build();

        DataStreamSource<String> mySQL_source = env.fromSource(mySQLSource, WatermarkStrategy.noWatermarks(), "MySQL Source");


        mySQL_source.print();

        // Kafka Sink
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "kafka.bootstrap.servers=master:9092,node1:9092,node2:9092");
        properties.setProperty("transaction.timeout.ms", "300000");
        String topicName = "mysql_test_user";
        KafkaSerializationSchema<String> serializationSchema = new KafkaSerializationSchema<String>() {
            @Override
            public ProducerRecord<byte[], byte[]> serialize(String element, Long timestamp) {
                return new ProducerRecord<>(
                        topicName, // target topic
                        element.getBytes(StandardCharsets.UTF_8)); // record contents
            }
        };

        FlinkKafkaProducer<String> myProducer = new FlinkKafkaProducer<>(
                topicName,             // target topic
                serializationSchema,    // serialization schema
                properties,             // producer config
                FlinkKafkaProducer.Semantic.EXACTLY_ONCE); // fault-tolerance

        mySQL_source.addSink(myProducer);

        env.execute();

    }

自定义Debezium序列化器

public class MyDebeziumSchema implements DebeziumDeserializationSchema<String>, CustomConverter {
    @Override
    public void deserialize(SourceRecord sourceRecord, Collector<String> collector) throws Exception {
//        JSONObject result = new JSONObject();

        String topic = sourceRecord.topic();

        String[] fileds = topic.split("\\.");

        String db = fileds[1];
        String tableName = fileds[2];
        Struct value = (Struct) sourceRecord.value();
        // 获取before数据
        Struct before = value.getStruct("before");
        JSONObject beforeJson = new JSONObject();

        if(before != null){
            //获取列信息
            Schema schema = before.schema();
            List<Field> fields = schema.fields();

            for (Field field : fields) {
                // 调整时区减8个小时
                if("io.debezium.time.Timestamp".equals(field.schema().name())){
                    Object o = before.get(field);
                    if(o!=null) {
                        Long v = (Long) o - 8*60*60*1000;
                        beforeJson.put(field.name(),v);
                    }else {
                        beforeJson.put(field.name(),null);
                    }
                }
                else {
                    beforeJson.put(field.name(),before.get(field));
                }
            }
            //添加库名和表名
            beforeJson.put("db",db);
            beforeJson.put("tableName",tableName);
        }

        // 获取after数据
        Struct after = value.getStruct("after");
        JSONObject afterJson = new JSONObject();

        if(after != null){
            //获取列信息
            Schema schema = after.schema();
            List<Field> fields = schema.fields();
            for (Field field : fields) {
                if("io.debezium.time.Timestamp".equals(field.schema().name())){
                    // 调整时区减8个小时
                    Object o = after.get(field);
                    if(o!=null) {
                        Long v = (Long) o - 8*60*60*1000;
                        afterJson.put(field.name(),v);
                    }else {
                        afterJson.put(field.name(),null);
                    }
                }
                else {
                    afterJson.put(field.name(),after.get(field));
                }
                //添加库名和表名
                afterJson.put("db",db);
                afterJson.put("tableName",tableName);
            }
        }



        // 获取操作类型
        Envelope.Operation operation = Envelope.operationFor(sourceRecord);
        String op = operation.toString();

        // 构造DebeziumJson数据
        JSONObject debeziumJson = new JSONObject();

        if(op.equals("UPDATE")){
            // flink update 由 delete 和 create 构成
            debeziumJson.put("before",beforeJson);
            debeziumJson.put("after",null);
            debeziumJson.put("op","d");
            collector.collect(debeziumJson.toJSONString());

            debeziumJson.put("before",null);
            debeziumJson.put("after",afterJson);
            debeziumJson.put("op","c");
            collector.collect(debeziumJson.toJSONString());
        }else if(op.equals("CREATE") || op.equals("READ")){  //READ为全量数据
            debeziumJson.put("before",null);
            debeziumJson.put("after",afterJson);
            debeziumJson.put("op","c");
            collector.collect(debeziumJson.toJSONString());
        }else if(op.equals("DELETE")){
            debeziumJson.put("before",beforeJson);
            debeziumJson.put("after",null);
            debeziumJson.put("op","d");
            collector.collect(debeziumJson.toJSONString());
        }

       // collector.collect(result.toJSONString());
    }

    @Override
    public TypeInformation<String> getProducedType() {
        return BasicTypeInfo.STRING_TYPE_INFO;
    }

    @Override
    public void configure(Properties properties) {

    }

    @Override
    public void converterFor(ConvertedField convertedField, ConverterRegistration converterRegistration) {

    }
}

把Kafka数据接入ClickHouse

public class KafkaToClickHouse {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        EnvironmentSettings settings = EnvironmentSettings
                .newInstance()
                .inStreamingMode()
                //.inBatchMode()
                .build();


        TableEnvironment tableEnvironment = TableEnvironment.create(settings);

        tableEnvironment.executeSql("CREATE TABLE kafkaTable ( \n" +
                "id Int, \n" +
                "name String,\n"+
                "age Int, \n" +
                "`time` BIGINT, \n" +
                "db String, \n" +
                "tableName String \n" +
                ") WITH (" +
                "  'connector' = 'kafka',\n" +
                "  'topic' = 'mysql_test_user',\n" +
                "  'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092',\n" +
                "  'properties.group.id' = 'testGroup',\n" +
                "  'scan.startup.mode' = 'latest-offset'," +
                "   'debezium-json.ignore-parse-errors' = 'true' ," +
                "  'format' = 'debezium-json'" +
                ")");



        tableEnvironment.executeSql("CREATE TABLE test_user (" +
                "id INT, \n" +
                "name String, \n" +
                "age Int, \n" +
                "`time` TIMESTAMP, \n" +
                "PRIMARY KEY (`id`) NOT ENFORCED\n" +
                ") WITH (" +
                "    'connector' = 'clickhouse'," +
                "    'url' = 'clickhouse://node2:8123'," +
                "    'database-name' = 'default'," +
                "    'table-name' = 'test_user'," +
                "    'username' = 'default'," +
                "    'password' = 'qwert', " +
                "    'sink.ignore-delete' = 'false', " +
                "    'catalog.ignore-primary-key' = 'false'," +
                "    'sink.batch-size' = '1',\n" +
                "    'sink.flush-interval' = '500'" +
                ")");






        TableResult tableResult = tableEnvironment.executeSql("insert into test_user \n" +
                "select " +
                "   id " +
                "   ,name " +
                "   ,age " +
                "   ,TO_TIMESTAMP(FROM_UNIXTIME(`time` / 1000, 'yyyy-MM-dd HH:mm:ss')) " +
                "from kafkaTable " +
                "where " +
                "   db = 'test' " +
                "   and tableName='user' ");

        tableResult.getJobClient().get().getJobExecutionResult().get();

    }
}
Logo

Kafka开源项目指南提供详尽教程,助开发者掌握其架构、配置和使用,实现高效数据流管理和实时处理。它高性能、可扩展,适合日志收集和实时数据处理,通过持久化保障数据安全,是企业大数据生态系统的核心。

更多推荐