(四)kafka生产者源码——全流程解析
废话少说,直接上总结。1:KafkaProducer类,详细源码解析见:作用:用于发送数据而提供的kafka 客户端,进行发送数据前的,集群连接配置,网络连接配置,用于向RecordAccumulator写数据。2:RecordAccumulator消息累加器,用于数据缓存,内存管理3:Sender独立于KafkaProducer的线程,负责发送RecordAccumulator数据前的准备工作,
1:生产者全流程介绍
废话少说,直接上总结。
1.1:使用类介绍
1:KafkaProducer类,详细源码解析见:(4.1)kafka生产者源码——KafkaProducer类
作用:用于发送数据而提供的kafka 客户端,进行发送数据前的,集群连接配置,网络连接配置,用于向RecordAccumulator写数据。
2:RecordAccumulator消息累加器,用于数据缓存,内存管理,源码详情 (4.2)kafka生产者源码——RecordAccumulator类
- 2.1:BufferPool 内存管理器,缓冲池,使用分配和是否空间
- 2.2:ProducerBatch 队列中一批次消息,可以包含多条消息
3:Sender独立于KafkaProducer的线程,负责发送RecordAccumulator数据前的准备工作,创建网络io请求,操作网络io层NetworkClient。源码详见 (4.4)kafka生产者源码——Sender线程类
4:NetworkClient是封装的一层网络客户端,用于生产者和消费者发送请求和获取响应,调用网络实现层Selector。源码详见 kafka网络通信客户端-NetworkClient类
5:Selector,该类是 Kafka 网络层最重要最核心的实现,也是非常经典的工业级通信框架实现,用于连接服务端,处理请求。源码详见 (3.4)broker源码——Kafka 网络层实现机制之 Selector 多路复用器
1.2:生产者源码运行流程图
kafka生产者流程图
下面进行详细分析。
1.3:生产者源码解析
1:开始生产数据demo详见生产者demo
KafkaProducer.send(new ProducerRecord<>(topic, messageNo,messageStr))
初始化KafkaProducer,调用其send方法
private Future<RecordMetadata> doSend(ProducerRecord<K, V> record, Callback callback) {
TopicPartition tp = null;/*记录topic-分区数*/
try {
// first make sure the metadata for the topic is available
ClusterAndWaitTime clusterAndWaitTime = waitOnMetadata(record.topic(), record.partition(), maxBlockTimeMs);
long remainingWaitMs = Math.max(0, maxBlockTimeMs - clusterAndWaitTime.waitedOnMetadataMs);
Cluster cluster = clusterAndWaitTime.cluster;
byte[] serializedKey;/*数据序列化,转为 byte[] */
try {
serializedKey = keySerializer.serialize(record.topic(), record.headers(), record.key());
} catch (ClassCastException cce) {
throw new SerializationException("Can't convert key of class " + record.key().getClass().getName() +
" to class " + producerConfig.getClass(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG).getName() +
" specified in key.serializer", cce);
}
//value的序列化
byte[] serializedValue;
try {
serializedValue = valueSerializer.serialize(record.topic(), record.headers(), record.value());
} catch (ClassCastException cce) {
throw new SerializationException("Can't convert value of class " + record.value().getClass().getName() +
" to class " + producerConfig.getClass(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG).getName() +
" specified in value.serializer", cce);
}
//1.1 对要发送的数据计算其要存储的topic-partition
int partition = partition(record, serializedKey, serializedValue, cluster);
tp = new TopicPartition(record.topic(), partition);
setReadOnly(record.headers());
Header[] headers = record.headers().toArray();
/*序列化后的消息大小 */
int serializedSize = AbstractRecords.estimateSizeInBytesUpperBound(apiVersions.maxUsableProduceMagic(),
compressionType, serializedKey, serializedValue, headers);
/*消息大小合格校验,单条默认最大不能超过1m,也不能超过缓冲区大小32M*/
ensureValidRecordSize(serializedSize);
long timestamp = record.timestamp() == null ? time.milliseconds() : record.timestamp();
log.trace("Sending record {} with callback {} to topic {} partition {}", record, callback, record.topic(), partition);
// producer callback will make sure to call both 'callback' and interceptor callback生产者回调将确保同时调用“回调”和拦截器回调
Callback interceptCallback = new InterceptorCallback<>(callback, this.interceptors, tp);
if (transactionManager != null && transactionManager.isTransactional())
transactionManager.maybeAddPartitionToTransaction(tp);
//1.2:向RecordAccumulator累加器内存缓冲区中的batch添加数据
RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey,
serializedValue, headers, interceptCallback, remainingWaitMs);
//1.3:对累加器中的数据进行判断,是否达到batch发送的条件,符合发送要求,唤醒sender线程发送
/*也就是说处理消息和发送是两个分开的线程,主线程构造数据和更新回调函数FutureRecordMetadata。
*sender采用异步发送+ 获取FutureRecordMetadata回调函数确保数据发送的状态*/
if (result.batchIsFull || result.newBatchCreated) {
log.trace("Waking up the sender since topic {} partition {} is either full or getting a new batch", record.topic(), partition);
this.sender.wakeup();
}
return result.future;
}
}
1.1:调用分区器 分区器分析文档,计算分区,没有指定key时默认采用轮询方式进行发送数据,所以指定key时可能发生数据倾斜现象。
1.2:进入RecordAccumulator累加器,对缓存区大小,batch批数据进行管理。
详见文档 (4.2)kafka生产者源码——RecordAccumulator类
append向 private final ConcurrentMap<TopicPartition, Deque<ProducerBatch>> batches;
队列写入数据
public RecordAppendResult append(TopicPartition tp,
long timestamp,
byte[] key,
byte[] value,
Header[] headers,
Callback callback,
long maxTimeToBlock) throws InterruptedException {
// We keep track of the number of appending thread to make sure we do not miss batches in
// abortIncompleteBatches().
appendsInProgress.incrementAndGet();
ByteBuffer buffer = null;/*生产者是多线程的,所以下面采用加锁synchronized和双重追加数据检查机制tryAppend处理dq*/
if (headers == null) headers = Record.EMPTY_HEADERS;
try {
// check if we have an in-progress batch检查该topic分区是否有正进行的批次,获取该分区对应的Deque队列,每个队列中可能存在着多批次未发送的数据
Deque<ProducerBatch> dq = getOrCreateDeque(tp);
/*只有一个线程进入*/
synchronized (dq)
{/*通过加锁给dq批次追加数据,防止多线程不安全*/
if (closed)
throw new IllegalStateException("Cannot send after the producer is closed.");
/*情况1:如果写入分区对应的没有任何一个批次存在,说明需要先创建批次,添加失败appendResult=null*/
RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq);
if (appendResult != null)
return appendResult;
}
//情况2:写入的分区没有正在进行的记录批处理,尝试创建的批处理追加数据
byte maxUsableMagic = apiVersions.maxUsableProduceMagic();
/*取批次(默认16k)设置的值和消息大小(默认1M)取最大值,所以两者一般需要调优*/
int size = Math.max(this.batchSize, AbstractRecords.estimateSizeInBytesUpperBound(maxUsableMagic, compression, key, value, headers));
log.trace("Allocating a new {} byte message buffer for topic {} partition {}", size, tp.topic(), tp.partition());
/*分配内存:取16k和消息大小的最大值*/
buffer = free.allocate(size, maxTimeToBlock);
synchronized (dq) {
// Need to check if producer is closed again after grabbing the dequeue lock.
if (closed)
throw new IllegalStateException("Cannot send after the producer is closed.");
RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq);
if (appendResult != null) {
// Somebody else found us a batch, return the one we waited for! Hopefully this doesn't happen often...
return appendResult;
}
/*下面三层封装进行了一些属性的分层解析,没有一次定义多次属性,解耦了*/
/*将分配的内存空间buffer封装为MemoryRecordsBuilder,用于写入record记录*/
MemoryRecordsBuilder recordsBuilder = recordsBuilder(buffer, maxUsableMagic);
/*初始化ProducerBatch,初始化内存空间大小=。时对MemoryRecordsBuilder封装*/
ProducerBatch batch = new ProducerBatch(tp, recordsBuilder, time.milliseconds());
/*batch.tryAppend:消息如何按照二进制的规范写入MemoryRecordsBuilder,再写到ProducerBatch*/
FutureRecordMetadata future = Utils.notNull(batch.tryAppend(timestamp, key, value, headers, callback, time.milliseconds()));
/*封装后的batch,写入队列*/
dq.addLast(batch);
incomplete.add(batch);
//使用完毕释放掉buffer,进入bufferpool循环使用,不要在final块中取消分配此缓冲区,因为它正在记录批处理中使用
buffer = null;
//更新是否批的状态,检查是否需要发送
return new RecordAppendResult(future, dq.size() > 1 || batch.isFull(), true);
}
} finally {
//使用完毕释放掉buffer,进入bufferpool循环使用
if (buffer != null)
free.deallocate(buffer);
appendsInProgress.decrementAndGet();
}
}
private RecordAppendResult tryAppend(long timestamp, byte[] key, byte[] value, Header[] headers,
Callback callback, Deque<ProducerBatch> deque) {
/*取出未发送批次中的最新批次的数据*/
ProducerBatch last = deque.peekLast();
if (last != null) {
FutureRecordMetadata future = last.tryAppend(timestamp, key, value, headers, callback, time.milliseconds());
if (future == null)
last.closeForRecordAppends();
else
return new RecordAppendResult(future, deque.size() > 1 || last.isFull(), false);
}
return null;
}
1.3:队列中接入数据后,就可以进行判断是否可以发送数据了。进入sender线程,先汇总数据以broker-tp汇总batch;创建clientrequest
void run(long now) {
if (transactionManager != null) {/*对事务管理器的一些判断,默认不开启,为null*/
try {
if (transactionManager.shouldResetProducerStateAfterResolvingSequences())
// Check if the previous run expired batches which requires a reset of the producer state.
transactionManager.resetProducerId();
if (!transactionManager.isTransactional()) {
// this is an idempotent producer, so make sure we have a producer id
maybeWaitForProducerId();
} else if (transactionManager.hasUnresolvedSequences() && !transactionManager.hasFatalError()) {
transactionManager.transitionToFatalError(new KafkaException("The client hasn't received acknowledgment for " +
"some previously sent messages and can no longer retry them. It isn't safe to continue."));
} else if (transactionManager.hasInFlightTransactionalRequest() || maybeSendTransactionalRequest(now)) {
// as long as there are outstanding transactional requests, we simply wait for them to return
client.poll(retryBackoffMs, now);
return;
}
// do not continue sending if the transaction manager is in a failed state or if there
// is no producer id (for the idempotent case).
if (transactionManager.hasFatalError() || !transactionManager.hasProducerId()) {
RuntimeException lastError = transactionManager.lastError();
if (lastError != null)
maybeAbortBatches(lastError);
client.poll(retryBackoffMs, now);
return;
} else if (transactionManager.hasAbortableError()) {
accumulator.abortUndrainedBatches(transactionManager.lastError());
}
} catch (AuthenticationException e) {
// This is already logged as error, but propagated here to perform any clean ups.
log.trace("Authentication exception while processing transactional request: {}", e);
transactionManager.authenticationFailed(e);
}
}
/*重点在sendProducerData中*/
long pollTimeout = sendProducerData(now);
client.poll(pollTimeout, now);
}
/*发送请求和构建请求的实现*/
private long sendProducerData(long now) {
/*更新元数据,topic->partitions->partition leader->isr*/
Cluster cluster = metadata.fetch();
// get the list of partitions with data ready to send
/*遍历所有的batch,判断可以发送的batch和获取可以发送batch对应的partition leader*/
RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);
// if there are any partitions whose leaders are not known yet, force metadata update
if (!result.unknownLeaderTopics.isEmpty()) {
// The set of topics with unknown leader contains topics with leader election pending as well as
// topics which may have expired. Add the topic again to metadata to ensure it is included
// and request metadata update, since there are messages to send to the topic.
for (String topic : result.unknownLeaderTopics)
this.metadata.add(topic);
this.metadata.requestUpdate();
}
// remove any nodes we are not ready to send to移除没有准备好发送数据的节点
Iterator<Node> iter = result.readyNodes.iterator();
long notReadyTimeout = Long.MAX_VALUE;
while (iter.hasNext()) {
Node node = iter.next();
/*检查客户端broker是否准备好,能否连接到node节点*/
if (!this.client.ready(node, now)) {
iter.remove();
notReadyTimeout = Math.min(notReadyTimeout, this.client.connectionDelay(node, now));
}
}
// batch是否需要被发送算法实现
// create produce requests创建发送请求,把发往同一个broker的所有batch都放在一起,得到batches,减小网络io和请求次数
Map<Integer, List<ProducerBatch>> batches = this.accumulator.drain(cluster, result.readyNodes,
this.maxRequestSize, now);
/*消息有序性,默认true,也就是所有分区都会保证*/
if (guaranteeMessageOrder) {
// Mute all the partitions drained将所有的分区加到标识中,标识该分区有正在处理的批次。
for (List<ProducerBatch> batchList : batches.values()) {
for (ProducerBatch batch : batchList)
this.accumulator.mutePartition(batch.topicPartition);
}
}
/*过期的批次*/
List<ProducerBatch> expiredBatches = this.accumulator.expiredBatches(this.requestTimeout, now);
// Reset the producer id if an expired batch has previously been sent to the broker. Also update the metrics
// for expired batches. see the documentation of @TransactionState.resetProducerId to understand why
// we need to reset the producer id here.
if (!expiredBatches.isEmpty())
log.trace("Expired {} batches in accumulator", expiredBatches.size());
for (ProducerBatch expiredBatch : expiredBatches) {
failBatch(expiredBatch, -1, NO_TIMESTAMP, expiredBatch.timeoutException(), false);
if (transactionManager != null && expiredBatch.inRetry()) {
// This ensures that no new batches are drained until the current in flight batches are fully resolved.
transactionManager.markSequenceUnresolved(expiredBatch.topicPartition);
}
}
sensors.updateProduceRequestMetrics(batches);
// If we have any nodes that are ready to send + have sendable data, poll with 0 timeout so this can immediately
// loop and try sending more data. Otherwise, the timeout is determined by nodes that have partitions with data
// that isn't yet sendable (e.g. lingering, backing off). Note that this specifically does not include nodes
// with sendable data that aren't ready to send since they would cause busy looping.
long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout);
if (!result.readyNodes.isEmpty()) {
log.trace("Nodes with data ready to send: {}", result.readyNodes);
// if some partitions are already ready to be sent, the select time would be 0;
// otherwise if some partition already has some data accumulated but not ready yet,
// the select time will be the time difference between now and its linger expiry time;
// otherwise the select time will be the time difference between now and the metadata expiry time;
pollTimeout = 0;
}
/*开始发送请求,会在里面构建clientRequest请求*/
sendProduceRequests(batches, now);
return pollTimeout;
}
1.6:sender线程构建clientRequest完成,调用networkClient进行send发送到selector复用器等待处理请求。此处详见 (3.4)broker源码——Kafka 网络层实现机制之 Selector 多路复用器
public void send(Send send) {
// 1. 从请求中获取 connectionId
String connectionId = send.destination();
// 2. 从数据包中获取对应连接
KafkaChannel channel = openOrClosingChannelOrFail(connectionId);
// 3. 如果关闭连接集合中存在该连接
if (closingChannels.containsKey(connectionId)) {
// ensure notification via `disconnected`, leave channel in the state in which closing was triggered
// 把 connectionId 放入 failedSends 集合里
this.failedSends.add(connectionId);
} else {
try {
// 4. 将send封装到KafkaChannel中。暂存数据预发送,并没有真正的发送,一次只能发送一个
channel.setSend(send);
} catch (Exception e) {
// update the state for consistency, the channel will be discarded after `close`
// 5. 更新 KafkaChannel 的状态为发送失败
channel.state(ChannelState.FAILED_SEND);
// ensure notification via `disconnected` when `failedSends` are processed in the next poll
// 6. 把 connectionId 放入 failedSends 集合里
this.failedSends.add(connectionId);
// 7. 关闭连接
close(channel, CloseMode.DISCARD_NO_NOTIFY);
if (!(e instanceof CancelledKeyException)) {
log.error("Unexpected exception during send, closing connection {} and rethrowing exception {}",
connectionId, e);
throw e;
}
}
}
}
将send请求封装到KafkaChannel.send属性上,并新增监听OP_WRITE事件,此时算请求发送完成,重新回到send.run()中开始处理请求进入到 client.poll
中
/* 1:重点在sendProducerData中,此时会汇总batch,寻找需要发送的partition leader,构建clientRequest到Selector中*/
long pollTimeout = sendProducerData(now);
/* 2:请求构建完成,这里会调用java.nio.Selector.select()方法取处理我们构建的clientRequest生产请求
client.poll(pollTimeout, now);
2:此时就简单了触发写事件,写完移除请求和写事件即可
1.4:从源码理解生产者配置参数
- max.request.size:定义了sender线程向服务器端发送数据请求时一个请求的最大字节数,一个请求中可以包含多个batch;同时还定义了生产者端可发送一条消息的最大大小。
- buffer.memory:生产客户端默认分配用于缓存batch的最大内存大小,会创建一个bufferpool缓冲池默认16M,里面包含了多个batch.size大小的byteBuffer
- batch.size:创建一个缓冲区的大小,可以包含多条消息,提升性能。
- acks:保证生产的可靠性,决定等待partition的多少副本写入成功
- linger.ms:batch被创建多久必须被发送出去,默认是0,一般对于生产端数据都是比较小的消息,设置可提升集群吞吐量,减少集群请求压力
- max.block.ms:send发送数据是缓冲区buffer.memory满的情况下等待处理发送数据的时长,默认阻塞60s
- key.serializer:消息中key的序列化方式
- partitioner.class:消息的分区器,默认无key是轮询发送的,也可以自定义
- compression.type:消息的压缩方式
1.5:从源码分析生产时常见的异常
1:Attempt to allocate bytes, but there is a hard limit of
从源码可知道,是申请的内存大小超过了总缓存空间大小。
涉及参数batch.size(批大小)、buffer.memory(总缓存空间大小),消息实际大小。传入的size取batch.size和消息实际大小的最大值。
解决:batch.size设置不能超过buffer.memory;消息中有超过buffer.memory大小的数据。
public ByteBuffer allocate(int size, long maxTimeToBlockMs) throws InterruptedException {
//要申请的内存大小大于总缓存空间抛出异常
if (size > this.totalMemory)
throw new IllegalArgumentException("Attempt to allocate " + size
+ " bytes, but there is a hard limit of "
+ this.totalMemory
+ " on memory allocations.");
更多推荐
所有评论(0)