kafka分区机制详解
本文来说下SpringBoot整合kafka之kafka分区实战文章目录概述概述
本文来说下SpringBoot整合kafka之kafka分区实战
kafka分区机制
分区机制是kafka实现高吞吐的秘密武器,但这个武器用得不好的话也容易出问题,今天主要就来介绍分区的机制以及相关的部分配置。
首先,从数据组织形式来说,kafka有三层形式,kafka有多个主题,每个主题有多个分区,每个分区又有多条消息。
而每个分区可以分布到不同的机器上,这样一来,从服务端来说,分区可以实现高伸缩性,以及负载均衡,动态调节的能力。
当然多分区就意味着每条消息都难以按照顺序存储,那么是不是意味着这样的业务场景kafka就无能为力呢?不是的,最简单的做法可以使用单个主题,单个分区,所有消息自然都顺序写入到一个分区中,就跟顺序队列一样了。而复杂些的,还有其他办法,那就是使用按消息键,将需要顺序保存的消息存储的单独的分区,其他消息存储其他分区,这个在下面会介绍。
分区个数选择
既然分区效果这么好,是不是越多分区越好呢?显而易见并非如此。
分区越多,所需要消耗的资源就越多。甚至如果足够大的时候,还会触发到操作系统的一些参数限制。比如linux中的文件描述符限制,一般在创建线程,创建socket,打开文件的场景下,linux默认的文件描述符参数,只有1024,超过则会报错。
看到这里有读者就会不耐烦了,说这么多有啥用,能不能直接告诉我分区分多少个比较好?很遗憾,暂时没有。
因为每个业务场景都不同,只能结合具体业务来看。假如每秒钟需要从主题写入和读取1GB数据,而消费者1秒钟最多处理50MB的数据,那么这个时候就可以设置20-25个分区,当然还要结合具体的物理资源情况。
而如何无法估算出大概的处理速度和时间,那么就用基准测试来测试吧。创建不同分区的topic,逐步压测测出最终的结果。如果实在是懒得测,那比较无脑的确定分区数的方式就是broker机器数量的2~3倍。
分区写入策略
所谓分区写入策略,即是生产者将数据写入到kafka主题后,kafka如何将数据分配到不同分区中的策略。常见的有三种策略,轮询策略,随机策略,和按键保存策略。其中轮询策略是默认的分区策略,而随机策略则是较老版本的分区策略,不过由于其分配的均衡性不如轮询策略,故而后来改成了轮询策略为默认策略。
轮询策略
所谓轮询策略,即按顺序轮流将每条数据分配到每个分区中。
举个例子,假设主题test有三个分区,分别是分区A,分区B和分区C。那么主题对接收到的第一条消息写入A分区,第二条消息写入B分区,第三条消息写入C分区,第四条消息则又写入A分区,依此类推。
轮询策略是默认的策略,故而也是使用最频繁的策略,它能最大限度保证所有消息都平均分配到每一个分区。除非有特殊的业务需求,否则使用这种方式即可。
消息按照分区挨个的写。
随机策略
随机策略,也就是每次都随机地将消息分配到每个分区。其实大概就是先得出分区的数量,然后每次获取一个随机数,用该随机数确定消息发送到哪个分区。
在比较早的版本,默认的分区策略就是随机策略,但其实使用随机策略也是为了更好得将消息均衡写入每个分区。但后来发现对这一需求而言,轮询策略的表现更优,所以社区后来的默认策略就是轮询策略了。
按键保存策略
按键保存策略,就是当生产者发送数据的时候,可以指定一个key,计算这个key的hashCode值,按照hashCode的值对不同消息进行存储。
至于要如何实现,那也简单,只要让生产者发送的时候指定key就行。刚刚不是说默认的是轮询策略吗?其实啊,kafka默认是实现了两个策略,没指定key的时候就是轮询策略,有的话那就按键保存策略了。
上面有说到一个场景,那就是要顺序发送消息到kafka。前面提到的方案是让所有数据存储到一个分区中,但其实更好的做法,就是使用这种按键保存策略。
让需要顺序存储的数据都指定相同的键,而不需要顺序存储的数据指定不同的键,这样一来,即实现了顺序存储的需求,又能够享受到kafka多分区的优势,岂不美哉。
相同的key的消息写到固定的分区中
本文小结
本文介绍了SpringBoot整合kafka之kafka分区实战。
更多推荐
所有评论(0)