Kafka(三) -- 使用Java和Scala开发Kafka程序
之前的Kafka学习笔记,我们介绍了Kafka的基本特性以及windows环境下Kafka的安装和使用,详情可以参见如下两篇博客:kafka学习笔记(一)–初识kafkakafka学习笔记(二)–windows环境下kafka2.1的安装和使用因为Kafka的源码使用Scala和Java两种语言实现的,所以本篇博客的开发的案例中使用了Jav...
·
之前的Kafka学习笔记,我们介绍了Kafka的基本特性以及windows环境下Kafka的安装和使用,详情可以参见如下两篇博客:
kafka学习笔记(二)–windows环境下kafka2.1的安装和使用
因为Kafka的源码使用Scala和Java两种语言实现的,所以本篇博客的开发的案例中使用了
Java和Sacla两种语言
为了保持代码简洁性, Scala版本和Java版本,只在producer端提供详尽的注释,消费端只对不同于生产端的代码提供注释
本篇博客涉及到的所有代码,均已经进行脱敏处理上传到github
github连接地址:
本博客涉及到的java程序链接:
本篇博客涉及到的scala程序链接:
需要的童鞋可以自行登录github下载~
本篇博客要点如下:
一. 开发环境准备
pom.xml文件需要导入如下配置:
<dependencies>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.10.0.1</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.0</version>
</dependency>
</dependencies>
二. 生产端开发
2.1 Scala版本
import java.util.Properties
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
/**
* @author xmr
* @date 2019/4/28 13:35
* @description
*/
object KafkaProducerTestScala {
def main(args: Array[String]): Unit = {
val properties = new Properties()
// 指定broker的地址清单,地址格式为 host : port
properties.put("bootstrap.servers", "10.213.32.96:9092,10.213.32.97:9092,10.213.32.98:9092")
// 使用该类将键对象序列化为字节数组
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
// 使用该类将值对象序列化为字节数组
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
// 添加消费组(非必须操作,但生产端要和消费端保持一致)
properties.put("group.id", "g2")
// 创建生产者对象
val producer=new KafkaProducer[String, String](properties)
// 将要发送的消息,我这里选用的是json格式
val json = "{\n \"K_LOG_SOURCE\": \"posp\",\n \"K_LOG_STATE\": \"25\",\n \"K_LOG_DESC\": \"交易耗时\",\n \"K_LOG_ERROR\": \"原交易不存在\",\n \"K_LOG_QUERY\": {\n \"LOG_NO\": \"367706019798\",\n \"T42_MERC_ID\": \"826440397038005\",\n \"TXN_TM\": \"20190428161147\",\n \"AC_DT\": \"20190409\",\n \"T41_TRM_NO\": \"J6010457\",\n \"TXN_CD\": \"2020003\",\n \"CORG_NO\": null\n },\n \"K_LOG_MS_END\": 1554806798155,\n \"K_LOG_MS_START\": 1554806747000,\n \"K_LOG_METHOD\": \"hessian\"\n }"
println(json)
// 创建ProducerRecord对象, 传入参数是主题名, 和要发送的消息内容
val rcd=new ProducerRecord[String, String]("posp_trade_time", json)
// 发送消息
producer.send(rcd)
// 这里必须要调结束,否则kafka那边收不到消息
producer.close()
}
}
2.2 Java版本
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
/**
* @author xmr
* @date 2019/4/28 13:41
* @description Kafka生产端(Java版)
*/
public class KafkaProducerTestJava {
public static void main(String[] args) {
Properties properties = new Properties();
// 指定broker的地址清单,地址格式为 host : port
properties.put("bootstrap.servers", "10.213.32.96:9092,10.213.32.97:9092,10.213.32.98:9092");
// 使用该类将键对象序列化为字节数组
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// 使用该类将值对象序列化为字节数组
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// 添加消费组(非必须操作,但生产端要和消费端保持一致)
properties.put("group.id", "g2");
// 创建生产者对象
KafkaProducer<String, String> kafkaProducer = new KafkaProducer(properties);
String json = "{\n \"K_LOG_SOURCE\": \"posp\",\n \"K_LOG_STATE\": \"25\",\n \"K_LOG_DESC\": \"交易耗时\",\n \"K_LOG_ERROR\": \"原交易不存在\",\n \"K_LOG_QUERY\": {\n \"LOG_NO\": \"367706019798\",\n \"T42_MERC_ID\": \"826440397038005\",\n \"TXN_TM\": \"20190428161147\",\n \"AC_DT\": \"20190409\",\n \"T41_TRM_NO\": \"J6010457\",\n \"TXN_CD\": \"2020003\",\n \"CORG_NO\": null\n },\n \"K_LOG_MS_END\": 1554806798155,\n \"K_LOG_MS_START\": 1554806747000,\n \"K_LOG_METHOD\": \"hessian\"\n }";
System.out.println(json);
// 创建ProducerRecord对象, 传入参数是主题名, 和要发送的消息内容
ProducerRecord producerRecord = new ProducerRecord<String, String>("posp_trade_time", json);
// 发送消息 (消息先被放进缓冲区,然后使用单独的线程发送到服务器端)
kafkaProducer.send(producerRecord);
// 关闭
kafkaProducer.close();
}
}
三. Kafka消费端开发
3.1 Scala版本
import java.util
import java.util.{Arrays, Properties}
import scala.collection.JavaConversions._
import org.apache.kafka.clients.consumer.{ConsumerRecord, ConsumerRecords, KafkaConsumer}
/**
* @author xmr
* @date 2019/4/28 13:55
* @description
*/
object KafkaConsumerTestScala extends Thread{
def main(args: Array[String]): Unit = {
start()
}
override def run() {
val properties = new Properties()
properties.put("bootstrap.servers", "10.213.32.96:9092,10.213.32.97:9092,10.213.32.98:9092")
properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.put("group.id", "g2")
// 创建消费端对象
val kafkaConsumer = new KafkaConsumer[String,String](properties)
// 订阅主题
kafkaConsumer.subscribe(util.Arrays.asList("posp_trade_time"))
// 消息轮询,消费端的核心
while (true) {
// 持续进行轮询,返回记录列表, 传递的参数是超时时间
val records: ConsumerRecords[String, String] = kafkaConsumer.poll(1000)
for (record <- records) {
System.out.println("消费者消费到数据: " + record)
}
// 提交最后一个返回的偏移量
kafkaConsumer.commitAsync()
}
}
}
3.2 Java版本
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import java.util.Arrays;
import java.util.Properties;
/**
* @author xmr
* @date 2019/4/28 13:56
* @description Kafka消费端(Java版)
*/
public class KafkaConsumerTestJava extends Thread{
public static void main(String[] args) {
KafkaConsumerTestJava kafkaConsumerTestJava = new KafkaConsumerTestJava();
kafkaConsumerTestJava.start();
}
@Override
public void run() {
Properties properties = new Properties();
properties.put("bootstrap.servers", "10.213.32.96:9092,10.213.32.97:9092,10.213.32.98:9092");
properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("group.id", "g2");
// 创建消费端对象
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<String, String>(properties);
// 订阅主题
kafkaConsumer.subscribe(Arrays.asList("posp_trade_time"));
// 消息轮询,消费端的核心
while (true) {
// 持续进行轮询,返回记录列表, 传递的参数是超时时间
ConsumerRecords<String, String> records = kafkaConsumer.poll(1000);
// 对获取到的记录进行处理
for(final ConsumerRecord record: records) {
System.out.println("消费者消费到数据: " + record);
}
// 提交最后一个返回的偏移量
kafkaConsumer.commitAsync();
}
}
}
四. 程序运行结果
首先开启消费端轮询监控
然后开启生产端生产数据
生产端开启之后,将会在消费端监测到数据:
更多推荐
已为社区贡献5条内容
所有评论(0)