HW 、 LEO 等概念和上一篇文章所说的 ISR有着紧密的关系,如果不了解 ISR 可以先看下ISR相关的介绍。

HW (High Watermark)俗称高水位,它标识了一个特定的消息偏移量(offset),消费者只能拉取到这个offset之前的消息。

下图表示一个日志文件,这个日志文件中只有9条消息,第一条消息的offset(LogStartOffset)为0,最有一条消息的offset为8,offset为9的消息使用虚线表示的,代表下一条待写入的消息。日志文件的 HW 为6,表示消费者只能拉取offset在 0 到 5 之间的消息,offset为6的消息对消费者而言是不可见的。

LEO (Log End Offset),标识当前日志文件中下一条待写入的消息的offset。上图中offset为9的位置即为当前日志文件的 LEO,LEO 的大小相当于当前日志分区中最后一条消息的offset值加1.分区 ISR 集合中的每个副本都会维护自身的 LEO ,而 ISR 集合中最小的 LEO 即为分区的 HW,对消费者而言只能消费 HW 之前的消息。


下面具体分析一下 ISR 集合和 HW、LEO的关系。

假设某分区的 ISR 集合中有 3 个副本,即一个 leader 副本和 2 个 follower 副本,此时分区的 LEO 和 HW 都分别为 3 。消息3和消息4从生产者出发之后先被存入leader副本。

在消息被写入leader副本之后,follower副本会发送拉取请求来拉取消息3和消息4进行消息同步。

在同步过程中不同的副本同步的效率不尽相同,在某一时刻follower1完全跟上了leader副本而follower2只同步了消息3,如此leader副本的LEO为5,follower1的LEO为5,follower2的LEO 为4,那么当前分区的HW取最小值4,此时消费者可以消费到offset0至3之间的消息。

当所有副本都成功写入消息3和消息4之后,整个分区的HW和LEO都变为5,因此消费者可以消费到offset为4的消息了。

由此可见kafka的复制机制既不是完全的同步复制,也不是单纯的异步复制。事实上,同步复制要求所有能工作的follower副本都复制完,这条消息才会被确认已成功提交,这种复制方式极大的影响了性能。而在异步复制的方式下,follower副本异步的从leader副本中复制数据,数据只要被leader副本写入就会被认为已经成功提交。在这种情况下,如果follower副本都还没有复制完而落后于leader副本,然后leader副本宕机,则会造成数据丢失。kafka使用这种ISR的方式有效的权衡了数据可靠性和性能之间的关系。

Logo

Kafka开源项目指南提供详尽教程,助开发者掌握其架构、配置和使用,实现高效数据流管理和实时处理。它高性能、可扩展,适合日志收集和实时数据处理,通过持久化保障数据安全,是企业大数据生态系统的核心。

更多推荐