【十四】Spark Streaming整合Kafka使用Receiver方式(使用Scala语言)
官方网站Kafka提供了新的consumer api 在0.8版本和0.10版本之间。0.8的集成是兼容0.9和0.10的。但是0.10的集成不兼容以前的版本。这里使用的集成是spark-streaming-kafka-0-8。官方文档配置SparkStreaming接收从kafka来的数据有两种方式。老的方式要使用Receiver,新的方式是Spark1.3后引进的不用Recei...
Kafka提供了新的consumer api 在0.8版本和0.10版本之间。0.8的集成是兼容0.9和0.10的。但是0.10的集成不兼容以前的版本。
这里使用的集成是spark-streaming-kafka-0-8。官方文档
配置SparkStreaming接收从kafka来的数据有两种方式。老的方式要使用Receiver,新的方式是Spark1.3后引进的不用Receiver。
Approach 1: Receiver-based Approach
Approach 2: Direct Approach (No Receivers)
这里介绍第一种需要使用Receiver的方式。
所有的数据接收都是数据通过Receiver从Kafka过来,然后存到Spark的executor,job启动后由Spark Streaming处理数据。
默认配置下在出现故障的时候可能会丢失数据,为了确保数据零丢失,需要开启WAL(Write Ahead Logs 一个数据过来先写到日志里面(在HDFS上)去,如果出现故障还能从日志里面拿数据,参考HBase的这种机制)机制。该机制在Spark1.2中推出。
注意事项
1.Kafka里面的Topic partition和RDD的partition不是一个概念。
2.创建多个Kafka input DStream可以使用不同的group和topic,采用并行的方式接收。这样可以提升吞吐量。
3.如果要开启WAL(Write Ahead Logs)机制需要一个像HDFS那样的文件系统作为支撑。接收到数据后会备份到log中。输入流的the storage level需要设置为StorageLevel.MEMORY_AND_DISK_SER
实战
1.启动zk
cd /app/zookeeper/bin
./zkServer.sh start
2.启动kafka
cd /app/kafka
bin/kafka-server-start.sh -daemon config/server.properties &
3.创建topic
bin/kafka-topics.sh --create --zookeeper node1:2181 --replication-factor 1 --partitions 1 --topic spark_topic
4.控制台测试topic是否能够正常生成和消费信息
发送消息
bin/kafka-console-producer.sh --broker-list node1:9092 --topic spark_topic
hello kafka
hello spark streaming
9092是server.properties中配置的监听端口
消费消息
bin/kafka-console-consumer.sh --zookeeper node1:2181 --topic spark_topic
5.项目目录
6.pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.sid.spark</groupId>
<artifactId>spark-train</artifactId>
<version>1.0</version>
<inceptionYear>2008</inceptionYear>
<properties>
<scala.version>2.11.8</scala.version>
<kafka.version>0.9.0.0</kafka.version>
<spark.version>2.2.0</spark.version>
<hadoop.version>2.9.0</hadoop.version>
<hbase.version>1.4.4</hbase.version>
</properties>
<repositories>
<repository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</pluginRepository>
</pluginRepositories>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>${kafka.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
<exclusions>
<exclusion>
<artifactId>servlet-api</artifactId>
<groupId>javax.servlet</groupId>
</exclusion>
</exclusions>
</dependency>
<!--<dependency>-->
<!--<groupId>org.apache.hbase</groupId>-->
<!--<artifactId>hbase-clinet</artifactId>-->
<!--<version>${hbase.version}</version>-->
<!--</dependency>-->
<!--<dependency>-->
<!--<groupId>org.apache.hbase</groupId>-->
<!--<artifactId>hbase-server</artifactId>-->
<!--<version>${hbase.version}</version>-->
<!--</dependency>-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume-sink_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>net.jpountz.lz4</groupId>
<artifactId>lz4</artifactId>
<version>1.3.0</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.31</version>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>3.5</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
<args>
<arg>-target:jvm-1.5</arg>
</args>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-eclipse-plugin</artifactId>
<configuration>
<downloadSources>true</downloadSources>
<buildcommands>
<buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand>
</buildcommands>
<additionalProjectnatures>
<projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature>
</additionalProjectnatures>
<classpathContainers>
<classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
<classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer>
</classpathContainers>
</configuration>
</plugin>
</plugins>
</build>
<reporting>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
</configuration>
</plugin>
</plugins>
</reporting>
</project>
7.代码
package com.sid.spark
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* Created by jy02268879 on 2018/7/19.
*
* Spark Streaming 基于 Receiver 对接Kafka
*/
object KafkaReceiver {
def main(args: Array[String]): Unit = {
if(args.length != 4){
System.err.println("Usage: KafkaReceiver <zkQuorum> <groupId> <topics> <numPartitions>")
System.exit(1)
}
val Array(zkQuorum, groupId, topics, numPartitions) = args
val sparkConf = new SparkConf().setAppName("KafkaReceiver").setMaster("local[3]")
val ssc = new StreamingContext(sparkConf,Seconds(5))
/**
* Create an input stream that pulls messages from Kafka Brokers.
* @param ssc StreamingContext object
* @param zkQuorum Zookeeper quorum (hostname:port,hostname:port,..)
* @param groupId The group id for this consumer
* @param topics Map of (topic_name to numPartitions) to consume. Each partition is consumed
* in its own thread
* @param storageLevel Storage level to use for storing the received objects
* (default: StorageLevel.MEMORY_AND_DISK_SER_2)
* @return DStream of (Kafka message key, Kafka message value)
*/
val topicMap = topics.split(",").map((_,numPartitions.toInt)).toMap
val messages = KafkaUtils.createStream(ssc,zkQuorum,groupId,topicMap)
messages.print()
messages.map(_._2).flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).print()
ssc.start()
ssc.awaitTermination()
}
}
8.运行
9.在Kafka生成数据 a a a b b c c
10.IDEA查看结果
本地运行成功以后提交到服务器上面运行
修改代码,把setMaster和setAppName注销掉
maven打包
把target下面的jar包传到服务器,提交到spark上运行
cd /app/spark/spark-2.2.0-bin-2.9.0/bin
./spark-submit --class com.sid.spark.KafkaReceiver --master local[2] --name KafkaReceiver --packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.2.0 /app/spark/test_data/spark-train-1.0-SNAPSHOT.jar node1:2181,node2:2181,node3:2181 test spark_topic 1
UI
更多推荐
所有评论(0)