kafka源码分析-consumer的分区策略
kafka提供了三种分区策略:RangeAssignor、RoundRobinAssignor和StickyAssignor,本文对这三种策略的源码进行了详细的分析并给出示例解释,尤其是对StickyAssignor进行了大篇幅的详细解析
kafka源码分析-consumer的分区策略
本文源码是kafka 2.0.1
1、AbstractPartitionAssignor
consumer有三种分区策略,分别是RangeAssignor、RoundRobinAssignor和StickyAssignor,这三个策略都继承了AbstractPartitionAssignor,实现了其assign方法。该方法有两个参数:
- partitionsPerTopic-每个topic的分区数量
- subscriptions-每个 consumerId 与其所订阅的 topic 列表的关系,可以理解成每个consumer可能被分配到的topic
/**
* Perform the group assignment given the partition counts and member subscriptions
* @param partitionsPerTopic The number of partitions for each subscribed topic. Topics not in metadata will be excluded
* from this map.
* @param subscriptions Map from the memberId to their respective topic subscription
* @return Map from each member to the list of partitions assigned to them.
*/
public abstract Map<String, List<TopicPartition>> assign(Map<String, Integer> partitionsPerTopic,
Map<String, Subscription> subscriptions);
2、RangeAssignor
先看代码实现
public class RangeAssignor extends AbstractPartitionAssignor {
@Override
public String name() {
return "range";
}
private Map<String, List<String>> consumersPerTopic(Map<String, Subscription> consumerMetadata) {
Map<String, List<String>> res = new HashMap<>();
for (Map.Entry<String, Subscription> subscriptionEntry : consumerMetadata.entrySet()) {
String consumerId = subscriptionEntry.getKey();
for (String topic : subscriptionEntry.getValue().topics())
put(res, topic, consumerId);
}
return res;
}
// partitionsPerTopic-每个topic的分区数量
// subscriptions-每个 consumerId 与其所订阅的 topic 列表的关系
@Override
public Map<String, List<TopicPartition>> assign(Map<String, Integer> partitionsPerTopic,
Map<String, Subscription> subscriptions) {
// 将subscriptions转换成key为topic,value为consumerId的map
Map<String, List<String>> consumersPerTopic = consumersPerTopic(subscriptions);
// 存储rebalace方案的数据结构
Map<String, List<TopicPartition>> assignment = new HashMap<>();
for (String memberId : subscriptions.keySet())
assignment.put(memberId, new ArrayList<TopicPartition>());
// 遍历consumersPerTopic
for (Map.Entry<String, List<String>> topicEntry : consumersPerTopic.entrySet()) {
String topic = topicEntry.getKey();
// 和这个topic相关的consumer列表
List<String> consumersForTopic = topicEntry.getValue();
// 该topic的分区数
Integer numPartitionsForTopic = partitionsPerTopic.get(topic);
if (numPartitionsForTopic == null)
continue;
Collections.sort(consumersForTopic);
// 取商
int numPartitionsPerConsumer = numPartitionsForTopic / consumersForTopic.size();
// 取余数
int consumersWithExtraPartition = numPartitionsForTopic % consumersForTopic.size();
// 【以下关键分配步骤】
// 生成TopicPartition列表
List<TopicPartition> partitions = AbstractPartitionAssignor.partitions(topic, numPartitionsForTopic);
for (int i = 0, n = consumersForTopic.size(); i < n; i++) {
// 本consumer分配到的初始位置
int start = numPartitionsPerConsumer * i + Math.min(i, consumersWithExtraPartition);
// 长度
int length = numPartitionsPerConsumer + (i + 1 > consumersWithExtraPartition ? 0 : 1);
// 当consumersWithExtraPartition 不是0时,优先给前面的consumer多分配一个partition,能整除部分各consumer均分
assignment.get(consumersForTopic.get(i)).addAll(partitions.subList(start, start + length));
}
}
return assignment;
}
}
重点关注源码的【关键分配步骤】,该步骤是将所有topic的分区平均分配给每个consumer,对于不能平均分配的分配给前consumersWithExtraPartition个consumer,也就是前consumersWithExtraPartition个consumer分配到的分区数会比后面的多一个。
【例1】
假设有一个topic有7个partition,有三个consumer都订阅了该topic,那么通过RangeAssignor的分配方案为:
- consumer0:start=0,length=3,分配到的partition为:p0、p1、p2
- consumer1:start=3,length=2,分配到的partition为:p3、p4
- consumer2:start=5,length=2,分配到的partition为:p5、p6
【例2】
在看一个多topic分配的例子,假设consumer0订阅了topic0、topic1、topic2,consumer1订阅了topic0、topic1,consumer2订阅了topic2,topic0、topic1、topic2分别有3、2、1个partition,那么分配的结果是:
consumer | 分配到的partition |
---|---|
consumer0 | t0p0、t0p1、t1p0、t2p0 |
consumer1 | t0p2、t1p1 |
consumer2 |
可以看到分配结果并不均匀,甚至有consumer闲置。
3、RoundRobinAssignor
先看源码
public class RoundRobinAssignor extends AbstractPartitionAssignor {
@Override
public Map<String, List<TopicPartition>> assign(Map<String, Integer> partitionsPerTopic,
Map<String, Subscription> subscriptions) {
// 存储数据结构
Map<String, List<TopicPartition>> assignment = new HashMap<>();
for (String memberId : subscriptions.keySet())
assignment.put(memberId, new ArrayList<TopicPartition>());
// 【关键分配步骤】
// 将consumer排序并生成环状迭代器
CircularIterator<String> assigner = new CircularIterator<>(Utils.sorted(subscriptions.keySet()));
// 遍历所有的partition
for (TopicPartition partition : allPartitionsSorted(partitionsPerTopic, subscriptions)) {
final String topic = partition.topic();
// 找到订阅这个partition对应topic的消费者
while (!subscriptions.get(assigner.peek()).topics().contains(topic))
// 返回迭代器当前位置的元素,并将迭代器计数+1
assigner.next();
// 将partition分配给消费者
assignment.get(assigner.next()).add(partition);
}
return assignment;
}
// 获取所有的partition,并且同一个topic的partition是相连的
public List<TopicPartition> allPartitionsSorted(Map<String, Integer> partitionsPerTopic,
Map<String, Subscription> subscriptions) {
SortedSet<String> topics = new TreeSet<>();
for (Subscription subscription : subscriptions.values())
topics.addAll(subscription.topics());
List<TopicPartition> allPartitions = new ArrayList<>();
for (String topic : topics) {
Integer numPartitionsForTopic = partitionsPerTopic.get(topic);
if (numPartitionsForTopic != null)
allPartitions.addAll(AbstractPartitionAssignor.partitions(topic, numPartitionsForTopic));
}
return allPartitions;
}
@Override
public String name() {
return "roundrobin";
}
}
重点关注【关键分配步骤】它的分配规则是遍历所有的topic-partition,对每个consumer以环状的形式进行分配,从当前位置往后找到第一个可以分配的consumer,将当前partition分配给找到的consumer,并将位置+1,继续下一个partition的分配。
看2中的【例2】使用RoundRobinAssignor的分配方案
分配轮次 | consumer0 | consumer1 | consumer2 |
---|---|---|---|
1 | t0p0 | t0p1 | |
2 | t0p2 | t1p0 | |
3 | t1p1 | t2p0 |
可以看到相比于RangeAssignor分配更加均匀,但是这种方式并不能完全解决平均分配的问题,看一下下面的例子
【例3】
假设consumer0订阅了topic0、topic1、topic2,consumer1订阅了topic0、topic1,consumer2订阅了topic2,topic0、topic1、topic2分别有4、3、2个partition,那么分配的结果是:
consumer | 分配到的partition |
---|---|
consumer0 | t0p0、t0p2、t1p0、t1p2、t2p1 |
consumer1 | t0p1、t0p3、t1p1 |
consumer2 | t2p0 |
可以看到将t2p1分配给consumer2的话,分配结果更加平均。
4、StickyAssignor策略
sticky-粘性的,非常形象的名字,StickyAssignor从0.11版本才开始引入的,主要有两个目的
- 目的1:分区的分配要尽可能均匀
- 目的2:分区的分配要尽可能与上次分配的保持相同
目的1和目的2冲突时,目的1优于目的2。
StickyAssignor的代码较多,先看下面的流程图
以3中的【例3】为例来看一下StickyAssignor策略的分配结果
consumer | 分配到的partition |
---|---|
consumer0 | t0p0、t0p2、t1p0、t1p2 |
consumer1 | t0p1、t0p3、t1p1 |
consumer2 | t2p0、t2p1 |
相比于RoundRobinAssignor,分配结果达到均衡。假设新加入了consumer3,其订阅了topic0,那么再看一下再均衡的过程:
(1)所有partition的排序结果:t0p0、t0p1、t0p2、t0p3、t1p0、t1p1、t1p1、t2p0、t2p1
(2)初始的consumer排序:consumer3、consumer2、consumer1、consumer0
(3)开始再均衡,显然t0p0是可以再分配的,重新分配后的结果及consuemr顺序是:
consumer(排序) | 分配到的partition |
---|---|
consumer3 | t0p0 |
consumer2 | t2p0、t2p1 |
consumer0 | t0p2、t1p0、t1p2 |
consumer1 | t0p1、t0p3、t1p1 |
继续处理t0p1,显然也可以再分配,由consumer1调整到consumer3
consumer(排序) | 分配到的partition |
---|---|
consumer2 | t2p0、t2p1 |
consumer3 | t0p0、t0p1 |
consumer1 | t0p3、t1p1 |
consumer0 | t0p2、t1p0、t1p2 |
(4)完成再分配过程,返回结果
流程图中省略了很多细节,相关内容可见下面源码分析:
public class StickyAssignor extends AbstractPartitionAssignor {
private static final Logger log = LoggerFactory.getLogger(StickyAssignor.class);
// these schemas are used for preserving consumer's previously assigned partitions
// list and sending it as user data to the leader during a rebalance
private static final String TOPIC_PARTITIONS_KEY_NAME = "previous_assignment";
private static final String TOPIC_KEY_NAME = "topic";
private static final String PARTITIONS_KEY_NAME = "partitions";
private static final Schema TOPIC_ASSIGNMENT = new Schema(
new Field(TOPIC_KEY_NAME, Type.STRING),
new Field(PARTITIONS_KEY_NAME, new ArrayOf(Type.INT32)));
private static final Schema STICKY_ASSIGNOR_USER_DATA = new Schema(
new Field(TOPIC_PARTITIONS_KEY_NAME, new ArrayOf(TOPIC_ASSIGNMENT)));
private List<TopicPartition> memberAssignment = null;
private PartitionMovements partitionMovements;
public Map<String, List<TopicPartition>> assign(Map<String, Integer> partitionsPerTopic,
Map<String, Subscription> subscriptions) {
Map<String, List<TopicPartition>> currentAssignment = new HashMap<>();
partitionMovements = new PartitionMovements();
// 先构建出当前的分配状态:currentAssignment
// 这个方法里用的userData是自定义信息,但是是怎么用的??
prepopulateCurrentAssignments(subscriptions, currentAssignment);
// 判断是否是全新的分配,true-是
boolean isFreshAssignment = currentAssignment.isEmpty();
// 记录partirion可以分配给哪些consumer
final Map<TopicPartition, List<String>> partition2AllPotentialConsumers = new HashMap<>();
// 记录consumer能够被分配到哪些partition
final Map<String, List<TopicPartition>> consumer2AllPotentialPartitions = new HashMap<>();
// 初始化partition2AllPotentialConsumers,value是空List
for (Entry<String, Integer> entry: partitionsPerTopic.entrySet()) {
for (int i = 0; i < entry.getValue(); ++i)
partition2AllPotentialConsumers.put(new TopicPartition(entry.getKey(), i), new ArrayList<String>());
}
// 遍历subscriptions
for (Entry<String, Subscription> entry: subscriptions.entrySet()) {
String consumer = entry.getKey();
// 初始化consumer2AllPotentialPartitions的每个consumer
consumer2AllPotentialPartitions.put(consumer, new ArrayList<TopicPartition>());
for (String topic: entry.getValue().topics()) {
for (int i = 0; i < partitionsPerTopic.get(topic); ++i) {
TopicPartition topicPartition = new TopicPartition(topic, i);
// 将这个consumer订阅的topic的所有partition存入consumer2AllPotentialPartitions
consumer2AllPotentialPartitions.get(consumer).add(topicPartition);
// 将这个topic的所有partition都记录上consumer
partition2AllPotentialConsumers.get(topicPartition).add(consumer);
}
}
// 当前consumer的分配方案不存在
if (!currentAssignment.containsKey(consumer))
// 初始化当前consumer的分配存储结构
currentAssignment.put(consumer, new ArrayList<TopicPartition>());
}
// 以上完成partition2AllPotentialConsumers和consumer2AllPotentialPartitions的初始化
// 记录当前分配方案中的partition和consumer的关系
Map<TopicPartition, String> currentPartitionConsumer = new HashMap<>();
for (Map.Entry<String, List<TopicPartition>> entry: currentAssignment.entrySet())
for (TopicPartition topicPartition: entry.getValue())
currentPartitionConsumer.put(topicPartition, entry.getKey());
// 对有效分区进行排序,以便它们在潜在的重新分配阶段以适当的顺序进行处理,从而使消费者之间的分区移动最小(因此尊重最大粘性)
// 详细解析见下面sortPartitions的源码
List<TopicPartition> sortedPartitions = sortPartitions(
currentAssignment, isFreshAssignment, partition2AllPotentialConsumers, consumer2AllPotentialPartitions);
// 将排序后的partition存到unassignedPartitions
List<TopicPartition> unassignedPartitions = new ArrayList<>(sortedPartitions);
// 遍历当前的分配方案,进行删除处理
for (Iterator<Map.Entry<String, List<TopicPartition>>> it = currentAssignment.entrySet().iterator(); it.hasNext();) {
Map.Entry<String, List<TopicPartition>> entry = it.next();
if (!subscriptions.containsKey(entry.getKey())) {
// 之前的consumer不在存在,删除该consumer订阅的所有partition,并从当前分配方案中删除该consumer
for (TopicPartition topicPartition: entry.getValue())
currentPartitionConsumer.remove(topicPartition);
it.remove();
} else {
// otherwise (the consumer still exists)
for (Iterator<TopicPartition> partitionIter = entry.getValue().iterator(); partitionIter.hasNext();) {
TopicPartition partition = partitionIter.next();
if (!partition2AllPotentialConsumers.containsKey(partition)) {
// 这个partition不再存在,从当前分配方案删除partiton,并从currentPartitionConsumer删除partition
partitionIter.remove();
currentPartitionConsumer.remove(partition);
} else if (!subscriptions.get(entry.getKey()).topics().contains(partition.topic())) {
// 该consumer不再订阅该partition对应的topic,从当前分配方案删除partiton
partitionIter.remove();
} else
// 该partition已经被分配过,从未分配的partition中删除partition
unassignedPartitions.remove(partition);
}
}
}
// at this point we have preserved all valid topic partition to consumer assignments and removed
// all invalid topic partitions and invalid consumers. Now we need to assign unassignedPartitions
// to consumers so that the topic partition assignments are as balanced as possible.
// 根据已经分配给消费者的主题分区的数量,对消费者进行升序排序
TreeSet<String> sortedCurrentSubscriptions = new TreeSet<>(new SubscriptionComparator(currentAssignment));
sortedCurrentSubscriptions.addAll(currentAssignment.keySet());
balance(currentAssignment, sortedPartitions, unassignedPartitions, sortedCurrentSubscriptions,
consumer2AllPotentialPartitions, partition2AllPotentialConsumers, currentPartitionConsumer);
return currentAssignment;
}
// 省略一些方法
}
/**
* Sort valid partitions so they are processed in the potential reassignment phase in the proper order
* that causes minimal partition movement among consumers (hence honoring maximal stickiness)
*
* @param currentAssignment the calculated assignment so far
* @param isFreshAssignment whether this is a new assignment, or a reassignment of an existing one
* @param partition2AllPotentialConsumers a mapping of partitions to their potential consumers
* @param consumer2AllPotentialPartitions a mapping of consumers to potential partitions they can consumer from
* @return sorted list of valid partitions
*/
private List<TopicPartition> sortPartitions(Map<String, List<TopicPartition>> currentAssignment,
boolean isFreshAssignment,
Map<TopicPartition, List<String>> partition2AllPotentialConsumers,
Map<String, List<TopicPartition>> consumer2AllPotentialPartitions) {
List<TopicPartition> sortedPartitions = new ArrayList<>();
if (!isFreshAssignment && areSubscriptionsIdentical(partition2AllPotentialConsumers, consumer2AllPotentialPartitions)) {
// 如果不是新的分配,且每个consumer所可能分配到的partition都是一样的
// 复制一份当前的分配方案
Map<String, List<TopicPartition>> assignments = deepCopy(currentAssignment);
// 将不属于当前consumer的partition从当前分配方案中删除
for (Entry<String, List<TopicPartition>> entry: assignments.entrySet()) {
List<TopicPartition> toRemove = new ArrayList<>();
for (TopicPartition partition: entry.getValue())
if (!partition2AllPotentialConsumers.keySet().contains(partition))
toRemove.add(partition);
for (TopicPartition partition: toRemove)
entry.getValue().remove(partition);
}
// SubscriptionComparator是根据两个key对应value的长度进行比较,长度相同根据key进行字符串排序
TreeSet<String> sortedConsumers = new TreeSet<>(new SubscriptionComparator(assignments));
sortedConsumers.addAll(assignments.keySet());
// 将partition进行排序,是按consumer的顺序倒序取出,也就是分配到更多partition的consumer
while (!sortedConsumers.isEmpty()) {
String consumer = sortedConsumers.pollLast();
List<TopicPartition> remainingPartitions = assignments.get(consumer);
if (!remainingPartitions.isEmpty()) {
sortedPartitions.add(remainingPartitions.remove(0));
sortedConsumers.add(consumer);
}
}
// 将不属于consumer的partition放入到排序结果中
for (TopicPartition partition: partition2AllPotentialConsumers.keySet()) {
if (!sortedPartitions.contains(partition))
sortedPartitions.add(partition);
}
} else {
// PartitionComparator是根据两个key对应value的长度进行比较,如果长度相同则根据key进行字符串排序,在相同就根据topic的partition数排序
TreeSet<TopicPartition> sortedAllPartitions = new TreeSet<>(new PartitionComparator(partition2AllPotentialConsumers));
sortedAllPartitions.addAll(partition2AllPotentialConsumers.keySet());
// 顺序取出partition进行排序,越少可以被consumer分配到的partition越在前面
while (!sortedAllPartitions.isEmpty())
sortedPartitions.add(sortedAllPartitions.pollFirst());
}
return sortedPartitions;
}
/**
* Balance the current assignment using the data structures created in the assign(...) method above.
*/
private void balance(Map<String, List<TopicPartition>> currentAssignment,
List<TopicPartition> sortedPartitions,
List<TopicPartition> unassignedPartitions,
TreeSet<String> sortedCurrentSubscriptions,
Map<String, List<TopicPartition>> consumer2AllPotentialPartitions,
Map<TopicPartition, List<String>> partition2AllPotentialConsumers,
Map<TopicPartition, String> currentPartitionConsumer) {
// 是否是初始化分配,如果最大数量partition的consumer所分配到的partition都是空的,则是新的分配
boolean initializing = currentAssignment.get(sortedCurrentSubscriptions.last()).isEmpty();
boolean reassignmentPerformed = false;
// 分配还未分配的partition
// 分配给最少partition的consumer,并重新将该consumer放入sortedCurrentSubscriptions,为了重新将consumer排序
for (TopicPartition partition: unassignedPartitions) {
// skip if there is no potential consumer for the partition
if (partition2AllPotentialConsumers.get(partition).isEmpty())
continue;
assignPartition(partition, sortedCurrentSubscriptions, currentAssignment,
consumer2AllPotentialPartitions, currentPartitionConsumer);
}
// fixedPartitions记录只能被分配给唯一consumer的partition,并将这部分partition从sortedPartitions中移除
// 到目前为止所有的所有的partition已经被分配了,剔除掉不可能被重新分配的partition
// fixedPartitions在后面并没有什么用途,单纯的中间变量
Set<TopicPartition> fixedPartitions = new HashSet<>();
for (TopicPartition partition: partition2AllPotentialConsumers.keySet())
if (!canParticipateInReassignment(partition, partition2AllPotentialConsumers))
fixedPartitions.add(partition);
sortedPartitions.removeAll(fixedPartitions);
// 将已经分配结束的consumer从sortedCurrentSubscriptions删除,并将其对应的partition存入fixedAssignments
Map<String, List<TopicPartition>> fixedAssignments = new HashMap<>();
for (String consumer: consumer2AllPotentialPartitions.keySet())
// canParticipateInReassignment:consumer是否可以被重新分配,true-可以
// 1、没满:满即所有可能分配给这个consumer的partition已全部分配给该consumer,返回true
// 2、满了,但是该consumer的partition有任一partition可以被分配给多个consumer,返回true
if (!canParticipateInReassignment(consumer, currentAssignment,
consumer2AllPotentialPartitions, partition2AllPotentialConsumers)) {
sortedCurrentSubscriptions.remove(consumer);
fixedAssignments.put(consumer, currentAssignment.remove(consumer));
}
// create a deep copy of the current assignment so we can revert to it if we do not get a more balanced assignment later
// 备份
Map<String, List<TopicPartition>> preBalanceAssignment = deepCopy(currentAssignment);
Map<TopicPartition, String> preBalancePartitionConsumers = new HashMap<>(currentPartitionConsumer);
// reassignmentPerformed-true,意味着被重新分配过
reassignmentPerformed = performReassignments(sortedPartitions, currentAssignment, sortedCurrentSubscriptions,
consumer2AllPotentialPartitions, partition2AllPotentialConsumers, currentPartitionConsumer);
// getBalanceScore-计算平衡分数,分数越小越好,分数是正的
// 如何计算:遍历所有consumer的partition数和其他consumer的partition数相减的绝对值累加,已经遍历过的consumer要删除(即后面的partition计算时不会在用到前面已处理过的consumer)
if (!initializing && reassignmentPerformed && getBalanceScore(currentAssignment) >= getBalanceScore(preBalanceAssignment)) {
// 重新分配的方案不好,重置回原来的方案
deepCopy(preBalanceAssignment, currentAssignment);
currentPartitionConsumer.clear();
currentPartitionConsumer.putAll(preBalancePartitionConsumers);
}
// 将前面不需要重新分配的consumer重新放到当前分配方案和排序中
for (Entry<String, List<TopicPartition>> entry: fixedAssignments.entrySet()) {
String consumer = entry.getKey();
currentAssignment.put(consumer, entry.getValue());
sortedCurrentSubscriptions.add(consumer);
}
fixedAssignments.clear();
}
private boolean performReassignments(List<TopicPartition> reassignablePartitions,
Map<String, List<TopicPartition>> currentAssignment,
TreeSet<String> sortedCurrentSubscriptions,
Map<String, List<TopicPartition>> consumer2AllPotentialPartitions,
Map<TopicPartition, List<String>> partition2AllPotentialConsumers,
Map<TopicPartition, String> currentPartitionConsumer) {
boolean reassignmentPerformed = false;
boolean modified;
// repeat reassignment until no partition can be moved to improve the balance
do {
modified = false;
// reassign all reassignable partitions (starting from the partition with least potential consumers and if needed)
// until the full list is processed or a balance is achieved
// 重新分配所有可重新分配的分区(从潜在使用者最少的分区开始,如果需要),或者达到平衡
Iterator<TopicPartition> partitionIterator = reassignablePartitions.iterator();
// isBalanced-判断当前方案已经平衡
// 1、当前分配方案分配到最少partition的consumer的数量大于等于最多的数量-1,返回ture
// 2、数量比较少的consumer,没有其他consumer的partition有可能分配给该consumer,返回true
while (partitionIterator.hasNext() && !isBalanced(currentAssignment, sortedCurrentSubscriptions, consumer2AllPotentialPartitions)) {
TopicPartition partition = partitionIterator.next();
// the partition must have at least two consumers
if (partition2AllPotentialConsumers.get(partition).size() <= 1)
log.error("Expected more than one potential consumer for partition '" + partition + "'");
// the partition must have a current consumer
String consumer = currentPartitionConsumer.get(partition);
if (consumer == null)
log.error("Expected partition '" + partition + "' to be assigned to a consumer");
// check if a better-suited consumer exist for the partition; if so, reassign it
for (String otherConsumer: partition2AllPotentialConsumers.get(partition)) {
if (currentAssignment.get(consumer).size() > currentAssignment.get(otherConsumer).size() + 1) {
// 参照下面源码解析
reassignPartition(partition, currentAssignment, sortedCurrentSubscriptions, currentPartitionConsumer, consumer2AllPotentialPartitions);
reassignmentPerformed = true;
modified = true;
break;
}
}
}
} while (modified);
return reassignmentPerformed;
}
private void reassignPartition(TopicPartition partition,
Map<String, List<TopicPartition>> currentAssignment,
TreeSet<String> sortedCurrentSubscriptions,
Map<TopicPartition, String> currentPartitionConsumer,
Map<String, List<TopicPartition>> consumer2AllPotentialPartitions) {
String consumer = currentPartitionConsumer.get(partition);
// sortedCurrentSubscriptions是按consumer已分配的partition数量升序,所以找到第一可以分配到该partition的consumer就是新的可分配consumer
String newConsumer = null;
for (String anotherConsumer: sortedCurrentSubscriptions) {
if (consumer2AllPotentialPartitions.get(anotherConsumer).contains(partition)) {
newConsumer = anotherConsumer;
break;
}
}
assert newConsumer != null;
// 找到准确的需要被重新分配的partition,为了粘性分配,详情参考下面getTheActualPartitionToBeMoved源码
TopicPartition partitionToBeMoved = partitionMovements.getTheActualPartitionToBeMoved(partition, consumer, newConsumer);
// 将需要移动的partition进行重新分配
// 1、将新旧consumer从排序结果中删除,为了重新存入排序
// 2、更新partitionMovements和partitionMovementsByTopic
// 3、更新新旧consumer的分配方案和currentPartitionConsumer
// 4、对新旧consumer的分配结果重新排序
processPartitionMovement(partitionToBeMoved, newConsumer, currentAssignment, sortedCurrentSubscriptions, currentPartitionConsumer);
return;
}
// partitionMovementsByTopic-存储partition上一次的调整关系(由srcConsumer调整到destConsumer)
// partitionMovementsForThisTopic-存储topic维度下ConsumerPair(新旧consumer)调整的partition
private TopicPartition getTheActualPartitionToBeMoved(TopicPartition partition, String oldConsumer, String newConsumer) {
String topic = partition.topic();
// 该topic的所有partition从未被调整过,直接返回该partition
if (!partitionMovementsByTopic.containsKey(topic))
return partition;
// 该partition被调整过
if (partitionMovements.containsKey(partition)) {
// this partition has previously moved
// 这次调整的旧consumer一定是上次调整的新consumer
assert oldConsumer.equals(partitionMovements.get(partition).dstMemberId);
// 旧consumer赋值为上次调整的旧consumer
// 这是为了下面更大限度保证粘性,比如partiiton0上次调整是A->C,这次是C->B,但是存在一个partiiton1是从B调整到A的,
// 经过这个赋值,将会用partition1代替partition0进行调整,这样B趋于平衡,A趋于不平衡,这样下次调整就有可能将A调整到C的partiiton调整会A
// 这个设计比较绕
oldConsumer = partitionMovements.get(partition).srcMemberId;
}
Map<ConsumerPair, Set<TopicPartition>> partitionMovementsForThisTopic = partitionMovementsByTopic.get(topic);
// 新旧consumer的“反consumer对”
ConsumerPair reversePair = new ConsumerPair(newConsumer, oldConsumer);
// 不存在“反consumer对”,直接返回该partition
if (!partitionMovementsForThisTopic.containsKey(reversePair))
return partition;
// 返回该“反consumer对”之前调整的一个partition,为了满足StickyAssignor的目的2,尽可能保证分配和上次相同
// 举个例子,比如这次要将partition0从consumerA调整到consumerB,但是在这之前曾将partition1从consumerB调整到consumerA,那么需要用partiiton1代替partiiton0
// 这时候partiion0和partition1都是属于consumerA的,调整partiion0和partition1都可以使分配方案趋于平衡,但是调整partition1更符合粘性策略
return partitionMovementsForThisTopic.get(reversePair).iterator().next();
}
本文主要对kafka的三种分区策略进行源码分析,RangeAssignor、RoundRobinAssignor都不能保证完全的均衡分配,StickyAssignor虽然实现复杂,但是相比于其他两种分配策略,均衡效果更好,而且可以减少不必要的分区调整。
更多推荐
所有评论(0)