什么要做日志分析平台?


随着业务量的增长,每天业务服务器将会产生上亿条的日志,单个日志文件达几个GB,这时我们发现用Linux自带工具,cat grep awk 分析越来越力不从心了,而且除了服务器日志,还有程序报错日志,分布在不同的服务器,查阅繁琐。


待解决的痛点:

1、大量不同种类的日志成为了运维人员的负担,不方便管理;


2、单个日志文件巨大,无法使用常用的文本工具分析,检索困难;


3、日志分布在多台不同的服务器上,业务一旦出现故障,需要一台台查看日志。


为了解决以上困扰:


接下来我们要一步步构建这个日志分析平台,架构图如下:

wKioL1f93pWDzh14AAFeY_uvtXc440.png

架构解读 : (整个架构从左到右,总共分为5层)


第一层、数据采集层

最左边的是业务服务器集群,上面安装了filebeat做日志采集,同时把采集的日志分别发送给两个logstash服务。


第二层、数据处理层,数据缓存层

logstash服务把接受到的日志经过格式处理,转存到本地的kafka broker+zookeeper 集群中。


第三层、数据转发层

这个单独的Logstash节点会实时去kafka broker集群拉数据,转发至ES DataNode。


第四层、数据持久化存储

ES DataNode 会把收到的数据,写磁盘,建索引库。


第五层、数据检索,数据展示

ES Master + Kibana 主要协调ES集群,处理数据检索请求,数据展示。


笔者为了节约宝贵的服务器资源,把一些可拆分的服务合并在同一台主机。大家可以根据自己的实际业务环境自由拆分,延伸架构。


开 工 !


操作系统环境 : CentOS release 6.5 


各服务器角色分配 :

IP 角色 所属集群
10.10.1.2 业务服务器+filebeat 业务服务器集群
10.10.1.30 Logstash+Kafka+ZooKeeper


Kafka Broker 集群

10.10.1.31 Logstash+Kafka+ZooKeeper
10.10.1.32 Kafka+ZooKeeper
10.10.1.50 Logstash 数据转发
10.10.1.60 ES DataNode



Elasticsearch 集群

10.10.1.90 ES DataNode
10.10.1.244 ES Master+Kibana


软件包版本:


jdk-8u101-linux-x64.rpm

logstash-2.3.2.tar.gz

filebeat-1.2.3-x86_64.rpm

kafka_2.11-0.10.0.1.tgz

zookeeper-3.4.9.tar.gz

elasticsearch-2.3.4.rpm 

kibana-4.5.3-linux-x64.tar.gz


一、安装部署Elasticsearch集群


布置ES Master节点 10.10.1.244


1、安装jdk1.8,elasticsearch-2.3.4


oracle官网 jdk 下载地址: http://www.oracle.com/technetwork/java/javase/downloads/index.html

elasticsearch 官网: https://www.elastic.co/

1
2
3
4
# 安装命令
yum  install  jdk-8u101-linux-x64.rpm elasticsearch-2.3.4.rpm -y
 
# ES 会被默认安装在 /usr/share/elasticsearch/


2、系统调优,JVM调优

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 配置系统最大打开文件描述符数
vim  /etc/sysctl .conf
fs. file -max=65535
 
# 配置进程最大打开文件描述符
vim  /etc/security/limits .conf
# End of file
* soft nofile 65535
* hard nofile 65535
 
# 配置 JVM内存
vim  /etc/sysconfig/elasticsearch
ES_HEAP_SIZE=4g
# 这台机器的可用内存为8G


3、编写ES Master节点配置文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# /etc/elasticsearch/elasticsearch.yml
 
# ---------------------------------- Cluster -----------------------------------
# Use a descriptive name for your cluster:
 
cluster.name: bigdata
 
# ------------------------------------ Node ------------------------------------
node.name: server1
node.master:  true
node.data:  false
 
# ----------------------------------- Index ------------------------------------
index.number_of_shards: 5
index.number_of_replicas: 0
index.refresh_interval: 120s
 
# ----------------------------------- Paths ------------------------------------
path.data:  /home/elk/data
 
path.logs:  /var/log/elasticsearch/elasticsearch .log
 
# ----------------------------------- Memory -----------------------------------
bootstrap.mlockall:  true
indices.fielddata.cache.size: 50mb
 
#------------------------------------ Network And HTTP --------------------------
network.host: 0.0.0.0
http.port: 9200
 
# ------------------------------------ Translog ----------------------------------
index.translog.flush_threshold_ops: 50000
 
# --------------------------------- Discovery ------------------------------------
discovery.zen.minimum_master_nodes: 1
discovery.zen. ping .timeout: 200s
discovery.zen.fd.ping_timeout: 200s
discovery.zen.fd. ping .interval: 30s
discovery.zen.fd. ping .retries: 6
discovery.zen. ping .unicast.hosts: [ "10.10.1.60:9300" , "10.10.1.90:9300" , "10.10.1.244:9300" ,]
discovery.zen. ping .multicast.enabled:  false
 
# --------------------------------- merge ------------------------------------------
indices.store.throttle.max_bytes_per_sec: 100mb


注: path.data、path.logs 这两个参数指定的路径,如果没有需要自己创建,还要赋予权限给elasticsearch用户。(后面的ES DataNode也同样)


4、安装head、kopf、bigdesk 开源插件

安装方法有两种 :

1、使用ES自带的命令plugin

1
2
3
4
5
6
# head
/usr/share/elasticsearch/bin/plugin  install  mobz /elasticsearch-head
# kopf
/usr/share/elasticsearch/bin/plugin  install  lmenezes /elasticsearch-kopf
# bigdesk
/usr/share/elasticsearch/bin/plugin  install  hlstudio /bigdesk

2、自行下载插件的源码包安装


我们通过plugin命令安装的插件,其实是安装到了这个路径:/usr/share/elasticsearch/plugins


而plugin install 命令后面跟的这一串 mobz/elasticsearch-head 其实是github上的一个地址。

前面加上github的官网地址就是 https://github.com/mobz/elasticsearch-head 可以复制到浏览器中打开,找到该插件的源码仓库。


现在知道了,想要找插件自己可以去github上搜一下出来一大堆。随便选一个然后取后面那串路径,用ES自带的命令安装。


如果安装失败了,那么就手动下载该插件的源码包。 解压后直接整个目录mv到 ES 的插件安装路径下。 

也就是这里: /usr/share/elasticsearch/plugins/


那如何访问安装好的插件呢?

http://ES_server_ip:port/_plugin/plugin_name

Example:

http://127.0.0.1:9200/_plugin/head/

http://127.0.0.1:9200/_plugin/kopf/


这时,ES Master已经配置好了。


布置ES DataNode节点 10.10.1.60


安装和系统调优方法同上,插件不用安装,只是配置文件不同。


编写配置文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# ---------------------------------- Cluster -----------------------------------
# Use a descriptive name for your cluster:
 
cluster.name: bigdata
 
# ------------------------------------ Node ------------------------------------
node.name: server2
node.master:  false
node.data:  true
 
# ----------------------------------- Index ------------------------------------
index.number_of_shards: 5
index.number_of_replicas: 0
index.refresh_interval: 120s
 
# ----------------------------------- Paths ------------------------------------
path.data:  /home/elk/data , /disk2/elk/data2
 
path.logs:  /var/log/elasticsearch/elasticsearch .log
 
# ----------------------------------- Memory -----------------------------------
bootstrap.mlockall:  true
indices.fielddata.cache.size: 50mb
 
#------------------------------------ Network And HTTP --------------------------
network.host: 0.0.0.0
http.port: 9200
 
# ------------------------------------ Translog ----------------------------------
index.translog.flush_threshold_ops: 50000
 
# --------------------------------- Discovery ------------------------------------
discovery.zen.minimum_master_nodes: 1
discovery.zen. ping .timeout: 200s
discovery.zen.fd.ping_timeout: 200s
discovery.zen.fd. ping .interval: 30s
discovery.zen.fd. ping .retries: 6
discovery.zen. ping .unicast.hosts: [ "10.10.1.244:9300" ,]
discovery.zen. ping .multicast.enabled:  false
 
# --------------------------------- merge ------------------------------------------
indices.store.throttle.max_bytes_per_sec: 100mb


10.10.1.60 也准备好了。


布置另一台ES DataNode节点 10.10.1.90


编写配置文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# ---------------------------------- Cluster -----------------------------------
# Use a descriptive name for your cluster:
 
cluster.name: bigdata
 
# ------------------------------------ Node ------------------------------------
node.name: server3
node.master:  false
node.data:  true
 
# ----------------------------------- Index ------------------------------------
index.number_of_shards: 5
index.number_of_replicas: 0
index.refresh_interval: 120s
 
# ----------------------------------- Paths ------------------------------------
path.data:  /home/elk/single
 
path.logs:  /var/log/elasticsearch/elasticsearch .log
 
# ----------------------------------- Memory -----------------------------------
bootstrap.mlockall:  true
indices.fielddata.cache.size: 50mb
 
#------------------------------------ Network And HTTP --------------------------
network.host: 0.0.0.0
http.port: 9200
 
# ------------------------------------ Translog ----------------------------------
index.translog.flush_threshold_ops: 50000
 
# --------------------------------- Discovery ------------------------------------
discovery.zen.minimum_master_nodes: 1
discovery.zen. ping .timeout: 200s
discovery.zen.fd.ping_timeout: 200s
discovery.zen.fd. ping .interval: 30s
discovery.zen.fd. ping .retries: 6
discovery.zen. ping .unicast.hosts: [ "10.10.1.244:9300" ,]
discovery.zen. ping .multicast.enabled:  false
 
# --------------------------------- merge ------------------------------------------
indices.store.throttle.max_bytes_per_sec: 100mb


5、现在三台ES节点已经准备就绪,分别启动服务

1
2
3
4
5
6
# 10.10.1.244
/etc/init .d /elasticsearch  start
# 10.10.1.60
/etc/init .d /elasticsearch  start
# 10.10.1.90
/etc/init .d /elasticsearch  start


6、访问head插件,查看集群状态

wKiom1f-AxDRvIMHAABrDZjJzqo236.png

此时 Elasticsearch 集群已经准备完成



二、配置位于架构图中第二层的ZooKeeper集群


配置 10.10.1.30 节点


1、安装,配置 zookeeper

zookeeper官网: http://zookeeper.apache.org/


1
2
3
4
5
# zookeeper 依赖 java,如果之前没安装过JDK,则需要安装.
rpm -ivh jdk-8u101-linux-x64.rpm
 
# 解压程序
tar  xf zookeeper-3.4.9. tar .gz


编写配置文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# conf/zoo.cfg
 
# The number of milliseconds of each tick
tickTime=2000
# The number of ticks that the initial 
# synchronization phase can take
initLimit=10
# The number of ticks that can pass between 
# sending a request and getting an acknowledgement
syncLimit=5
# the directory where the snapshot is stored.
# do not use /tmp for storage, /tmp here is just 
# example sakes.
dataDir= /u01/zookeeper/zookeeper-3 .4.9 /data
# the port at which the clients will connect
clientPort=2181
# the maximum number of client connections.
# increase this if you need to handle more clients
#maxClientCnxns=60
 
server.11=10.10.1.30:2888:3888
server.12=10.10.1.31:2888:3888
server.13=10.10.1.32:2888:3888
 
# Be sure to read the maintenance section of the 
# administrator guide before turning on autopurge.
#
# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
#
# The number of snapshots to retain in dataDir
# autopurge.snapRetainCount=3
# Purge task interval in hours
# Set to "0" to disable auto purge feature
# autopurge.purgeInterval=1


同步配置文件到其他两台节点

注: zookeeper 集群,每个节点的配置文件都是一样的。所以直接同步过去,不需要做任何修改。

不熟悉zookeeper的朋友,可以参考这里: http://tchuairen.blog.51cto.com/3848118/1859494

1
2
scp  zoo.cfg 10.10.1.31: /usr/local/zookeeper-3 .4.9 /conf/
scp  zoo.cfg 10.10.1.32: /usr/local/zookeeper-3 .4.9 /conf/


2、创建myid文件

1
2
3
4
5
6
7
8
# 10.10.1.30
echo  11 > /usr/local/zookeeper-3 .4.9 /data/myid
 
# 10.10.1.31
echo  12 > /usr/local/zookeeper-3 .4.9 /data/myid
 
# 10.10.1.32
echo  13 > /usr/local/zookeeper-3 .4.9 /data/myid


3、启动服务 & 查看节点状态

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# 10.10.1.30
bin /zkServer .sh start
bin /zkServer .sh status
 
ZooKeeper JMX enabled by default
Using config:  /usr/local/zookeeper/zookeeper-3 .4.9 /bin/ .. /conf/zoo .cfg
Mode: leader
 
# 10.10.1.31
bin /zkServer .sh start
bin /zkServer .sh status
  
ZooKeeper JMX enabled by default
Using config:  /usr/local/zookeeper/zookeeper-3 .4.9 /bin/ .. /conf/zoo .cfg
Mode: follower
 
# 10.10.1.32
bin /zkServer .sh start 
bin /zkServer .sh status
 
ZooKeeper JMX enabled by default
Using config:  /usr/local/zookeeper/zookeeper-3 .4.9 /bin/ .. /conf/zoo .cfg
Mode: follower


此时zookeeper集群配置完成


三、配置位于架构图中第二层的Kafka Broker集群


Kafka官网: http://kafka.apache.org/

不熟悉Kafka的朋友可以参考: http://tchuairen.blog.51cto.com/3848118/1855090


配置 10.10.1.30 节点

1、安装,配置 kafka

1
2
# 解压程序
tar  xf kafka_2.11-0.10.0.1.tgz


编写配置文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
############################# Server Basics #############################
broker. id =1
 
############################# Socket Server Settings #############################
 
num.network.threads=3
 
# The number of threads doing disk I/O
num.io.threads=8
 
# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400
 
# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400
 
# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600
 
############################# Log Basics #############################
 
log. dirs = /usr/local/kafka/kafka_2 .11-0.10.0.1 /data
 
num.partitions=6
 
num.recovery.threads.per.data. dir =1
 
############################# Log Flush Policy #############################
 
# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000
 
# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000
 
############################# Log Retention Policy #############################
 
log.retention.hours=60
 
log.segment.bytes=1073741824
 
log.retention.check.interval.ms=300000
 
############################# Zookeeper #############################
 
zookeeper.connect=10.10.1.30:2181,10.10.1.31:2181,10.10.1.32:2181
 
zookeeper.connection.timeout.ms=6000


注: 其他两个节点的配置文件也基本相同,只有一个参数需要修改 broker.id 。 它用于唯一标识节点,所以绝对不能相同,不然会节点冲突。


同步配置文件到其他两台节点

1
2
3
4
5
6
7
8
9
scp  server.properties 10.10.1.31: /usr/local/kafka/kafka_2 .11-0.10.0.1 /config/
scp  server.properties 10.10.1.32: /usr/local/kafka/kafka_2 .11-0.10.0.1 /config/
 
# 修改 broker.id
# 10.10.1.31
broker. id =2
 
# 10.10.1.32
broker. id =3


2、配置主机名对应IP的解析

1
2
3
4
5
6
7
vim  /etc/hosts
 
10.10.1.30 server1
10.10.1.31 server2
10.10.1.32 server3
 
# 记得同步到其他两台节点


3、启动服务 

1
2
bin /kafka-server-start .sh config /server .properties
# 其他两台节点启动方式相同


Kafka+ZooKeeper集群配置完成


四、配置位于架构图中第二层的Logstash服务


配置 10.10.1.30 节点


1、安装,配置 logstash

1
2
# 解压程序
tar  xf logstash-2.3.2. tar .gz


配置 GeoLiteCity , 用于地图显示IP访问的城市

官网地址: http://dev.maxmind.com/geoip/legacy/geolite/

下载地址: http://geolite.maxmind.com/download/geoip/database/GeoLiteCity.dat.gz


解压

gunzip GeoLiteCity.dat.gz


编写配置文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
input {
     beats {
     port => 5044
     codec =>  "json"
}
}
 
 
 
filter {
     if  [ type ] ==  "nginxacclog"  {
 
     geoip {
         source  =>  "clientip"  # 与日志中访问地址的key要对应
         target =>  "geoip"
         database =>  "/usr/local/logstash/GeoLiteCity.dat"
         add_field => [  "[geoip][coordinates]" , "%{[geoip][longitude]}"  ]
         add_field => [  "[geoip][coordinates]" , "%{[geoip][latitude]}"  ]
}
 
     mutate {
         convert => [  "[geoip][coordinates]" , "float"  ]
 
}
 
 
 
}
 
}
 
 
output {
   kafka {
     workers => 2
     bootstrap_servers =>  "10.10.1.30:9092,10.10.1.31:9092,10.10.1.32:9092"
     topic_id =>  "peiyinlog"
 
}
 
 
}


2、启动服务

1
/usr/local/logstash/bin/logstash  agent -f logstash_in_kafka.conf &


10.10.1.31 节点的这块配置,与上述完全相同。(略)

位于第二层、数据处理层的 Logstash 配置完成



五、配置数据采集层,业务服务器+Filebeat


1、定制Nginx日志格式

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
log_format json  '{"@timestamp":"$time_iso8601",'
                  '"slbip":"$remote_addr",'
                  '"clientip":"$http_x_forwarded_for",'
                  '"serverip":"$server_addr",'
                  '"size":$body_bytes_sent,'
                  '"responsetime":$request_time,'
                  '"domain":"$host",'
                  '"method":"$request_method",'
                  '"requesturi":"$request_uri",'
                  '"url":"$uri",'
                  '"appversion":"$HTTP_APP_VERSION",'
                  '"referer":"$http_referer",'
                  '"agent":"$http_user_agent",'
                  '"status":"$status",'
                  '"devicecode":"$HTTP_HA"}' ;
                  
# 在虚拟主机配置中调用
access_log   /alidata/log/nginx/access/access .log json;


2、安装 Filebeat

Filebeat 也是 Elasticsearch 公司的产品,在官网可以下载。

1
2
# rpm 包安装
yum  install  filebeat-1.2.3-x86_64.rpm -y


3、编写 Filebeat 配置文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
################### Filebeat Configuration Example #########################
 
############################# Filebeat ######################################
 
filebeat:
   prospectors:
     -
       paths:
         /var/log/messages
 
       input_type: log
       
       document_type: messages
 
     -
       paths:
         /alidata/log/nginx/access/access .log
       
       input_type: log
 
       document_type: nginxacclog
     
     -
       paths:
         /alidata/www/logs/laravel .log
        
       input_type: log
 
       document_type: larlog
     
     -
       paths:
         /alidata/www/logs/500_error .log
 
       input_type: log
 
       document_type: peiyinlar_500error
     
     -
       paths:
         /alidata/www/logs/deposit .log
       
       input_type: log
 
       document_type: lar_deposit
 
     -
       paths:
         /alidata/www/logs/call_error .log
      
       input_type: log
 
       document_type: call_error
     
     -
       paths:
         /alidata/log/php/php-fpm .log.slow
 
       input_type: log
 
       document_type: phpslowlog
 
       multiline: 
           pattern:  '^[[:space:]]'
           negate:  true
           match: after
 
   registry_file:  /var/lib/filebeat/registry
 
   
############################# Output ##########################################
   
output:
   logstash: 
     hosts: [ "10.26.95.215:5044" ]
   
 
############################# Shipper #########################################
   
shipper: 
   name:  "host_6"
   
   
############################# Logging ######################################### 
   
logging:  
   files:
     rotateeverybytes: 10485760  # = 10MB


4、启动服务

1
/etc/init .d /filebeat  start


数据采集层,Filebeat配置完成。


现在业务服务器上的日志数据已经在源源不断的写入缓存了。



六、配置位于架构图中的第三层,数据转发层


Logstash安装上面已经讲过(略)


编写Logstash配置文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# kafka_to_es.conf
 
input{
     kafka {
         zk_connect =>  "10.10.1.30:2181,10.10.1.31:2181,10.10.1.32:2181"
         group_id =>  "logstash"
         topic_id =>  "peiyinlog"
         reset_beginning =>  false
         consumer_threads => 50
         decorate_events =>  true
 
}
 
}
 
# 删除一些不需要的字段
 
filter {
   if  [ type ] ==  "nginxacclog"  {
 
      mutate {
      remove_field => [ "slbip" , "kafka" , "domain" , "serverip" , "url" , "@version" , "offset" , "input_type" , "count" , "source" , "fields" , "beat.hostname" , "host" , "tags" ]
     }
}
 
}
 
output {
     if  [ type ] ==  "nginxacclog"  {
        # stdout {codec => rubydebug }
         elasticsearch {
             hosts => [ "10.10.1.90:9200" , "10.10.1.60:9200" ]
             index =>  "logstash-nginxacclog-%{+YYYY.MM.dd}"
             manage_template =>  true
             flush_size => 50000
             idle_flush_time => 10
             workers => 2
}
 
}
 
 
 
     if  [ type ] ==  "messages"  {
         elasticsearch {
             hosts => [ "10.10.1.90:9200" , "10.10.1.60:9200" ]
             index =>  "logstash-messages-%{+YYYY.MM.dd}"
             manage_template =>  true
             flush_size => 50000
             idle_flush_time => 30
             workers => 1
}
 
}
 
 
     if  [ type ] ==  "larlog"  {
         elasticsearch {
             hosts => [ "10.10.1.90:9200" , "10.10.1.60:9200" ]
             index =>  "logstash-larlog-%{+YYYY.MM.dd}"
             manage_template =>  true
             flush_size => 2000
             idle_flush_time => 10
}
 
}
 
 
     if  [ type ] ==  "deposit"  {
         elasticsearch {
             hosts => [ "10.10.1.90:9200" , "10.10.1.60:9200" ]
             index =>  "logstash-deposit-%{+YYYY.MM.dd}"
             manage_template =>  true
             flush_size => 2000
             idle_flush_time => 10
}
 
}
 
 
     if  [ type ] ==  "phpslowlog"  {
         elasticsearch {
             hosts => [ "10.10.1.90:9200" , "10.10.1.60:9200" ]
             index =>  "logstash-phpslowlog-%{+YYYY.MM.dd}"
             manage_template =>  true
             flush_size => 2000
             idle_flush_time => 10
}
 
}
 
}


启动服务

1
/usr/local/logstash/bin/logstash  agent -f kafka_to_es.conf &


数据转发层已经配置完成


这时数据已经陆陆续续的从kafka取出,转存到ES DataNode。


我们登陆到任意一台kafka主机,查看数据的缓存和消费情况

wKioL1f-8G3gYSE2AABXLzMqcf0058.png



七、修改ES的索引模版配置


为什么要做这一步呢? 因为logstash写入数据到ES时,会自动选用一个索引模版。 我们可以看一下

wKioL1f-85ngb4HBAABR4b08KRI422.png


这个模版其实也挺好,不过有一个参数,我标记出来了。 "refresh_interval":"5s"  这个参数用于控制,索引的刷新频率。 索引的刷新频率越快,你搜索到的数据就实时。  这里是5秒。 一般我们日志场景不需要这么高的实时性。 可以适当降低该参数,提高ES 索引库的写入速度。  


上传自定义模版

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
curl -XPUT http: //10 .10.1.244:9200 /_template/logstash2  -d '
{
         "order" :1,
         "template" : "logstash-*" ,
         "settings" :{
             "index" :{
                 "refresh_interval" : "120s"
             }
         },
         "mappings" :{
             "_default_" :{
                 "_all" :{
                     "enabled" : false
                 }
             }
     }
}'


由于这个自定义模版,我把优先级 order 定义的比logstash模版高,而模版的匹配规则又一样,所以这个自定义模版的配置会覆盖原logstash模版。

我这里只是简单描述。 如果要详细理解其中道理,请查看我的 ES 调优篇。


八、配置 Kibana 数据展示层


10.10.1.244 节点

Kibana是ELK套件中的一员,也属于elasticsearch 公司,在官网提供下载。


安装

1
2
tar  xf kibana-4.5.3-linux-x64. tar .gz
# 很简单,只要解压就可以用。


修改配置文件

1
2
3
4
5
6
7
8
9
10
11
12
# vim kibana-4.5.3-linux-x64/config/kibana.yml
 
# Kibana is served by a back end server. This controls which port to use.
server.port: 5601
 
# The host to bind the server to.
server.host:  "0.0.0.0"
 
# The Elasticsearch instance to use for all your queries.
elasticsearch.url: "
 
# 修改这三个参数就好了


启动服务

wKiom1f--1jjDIH4AACCZWwZlR0270.png

打开浏览器访问: http://10.10.1.244:5601/


定制 Elasticsearch 索引的 Index pattern 


默认情况下,Kibana认为你要访问的是通过Logstash导入Elasticsearch的数据,这时候你可以用默认的 logstash-* 作为你的 index pattern。 通配符(*)匹配索引名中任意字符任意个数。


选择一个包含了时间戳的索引字段(字段类型为 date 的字段),可以用来做基于时间的处理。Kibana 会读取索引的

映射,然后列出所有包含了时间戳的字段。如果你的索引没有基于时间的数据.

关闭 Index contains time-based events 参数。


如果一个新索引是定期生成,而且索引名中带有时间戳,选择 Use event times to create index names 选项,

然后再选择 Index pattern interval 。这可以提高搜索性能,Kibana 会至搜索你指定的时间范围内的索引。在你用 Logstash 输出数据给Elasticsearch 的情况下尤其有效。


由于我们的索引是用日期命名,按照每天分割的。 index pattern 如下

wKiom1f-_yTCvOe2AADRDyL4MEg193.png


数据展示

wKiom1f-_5uhQx3XAADGEwSe3Us023.png

完 工 !

本文出自 “突破舒适区” 博客,请务必保留此出处http://tchuairen.blog.51cto.com/3848118/1861167

Logo

Kafka开源项目指南提供详尽教程,助开发者掌握其架构、配置和使用,实现高效数据流管理和实时处理。它高性能、可扩展,适合日志收集和实时数据处理,通过持久化保障数据安全,是企业大数据生态系统的核心。

更多推荐